Annotation of rpl/lapack/lapack/dlaeda.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b DLAEDA
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLAEDA + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaeda.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaeda.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaeda.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
        !            22: *                          GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            CURLVL, CURPBM, INFO, N, TLVLS
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), PERM( * ),
        !            29: *      $                   PRMPTR( * ), QPTR( * )
        !            30: *       DOUBLE PRECISION   GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * )
        !            31: *       ..
        !            32: *  
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *> DLAEDA computes the Z vector corresponding to the merge step in the
        !            40: *> CURLVLth step of the merge process with TLVLS steps for the CURPBMth
        !            41: *> problem.
        !            42: *> \endverbatim
        !            43: *
        !            44: *  Arguments:
        !            45: *  ==========
        !            46: *
        !            47: *> \param[in] N
        !            48: *> \verbatim
        !            49: *>          N is INTEGER
        !            50: *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
        !            51: *> \endverbatim
        !            52: *>
        !            53: *> \param[in] TLVLS
        !            54: *> \verbatim
        !            55: *>          TLVLS is INTEGER
        !            56: *>         The total number of merging levels in the overall divide and
        !            57: *>         conquer tree.
        !            58: *> \endverbatim
        !            59: *>
        !            60: *> \param[in] CURLVL
        !            61: *> \verbatim
        !            62: *>          CURLVL is INTEGER
        !            63: *>         The current level in the overall merge routine,
        !            64: *>         0 <= curlvl <= tlvls.
        !            65: *> \endverbatim
        !            66: *>
        !            67: *> \param[in] CURPBM
        !            68: *> \verbatim
        !            69: *>          CURPBM is INTEGER
        !            70: *>         The current problem in the current level in the overall
        !            71: *>         merge routine (counting from upper left to lower right).
        !            72: *> \endverbatim
        !            73: *>
        !            74: *> \param[in] PRMPTR
        !            75: *> \verbatim
        !            76: *>          PRMPTR is INTEGER array, dimension (N lg N)
        !            77: *>         Contains a list of pointers which indicate where in PERM a
        !            78: *>         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)
        !            79: *>         indicates the size of the permutation and incidentally the
        !            80: *>         size of the full, non-deflated problem.
        !            81: *> \endverbatim
        !            82: *>
        !            83: *> \param[in] PERM
        !            84: *> \verbatim
        !            85: *>          PERM is INTEGER array, dimension (N lg N)
        !            86: *>         Contains the permutations (from deflation and sorting) to be
        !            87: *>         applied to each eigenblock.
        !            88: *> \endverbatim
        !            89: *>
        !            90: *> \param[in] GIVPTR
        !            91: *> \verbatim
        !            92: *>          GIVPTR is INTEGER array, dimension (N lg N)
        !            93: *>         Contains a list of pointers which indicate where in GIVCOL a
        !            94: *>         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)
        !            95: *>         indicates the number of Givens rotations.
        !            96: *> \endverbatim
        !            97: *>
        !            98: *> \param[in] GIVCOL
        !            99: *> \verbatim
        !           100: *>          GIVCOL is INTEGER array, dimension (2, N lg N)
        !           101: *>         Each pair of numbers indicates a pair of columns to take place
        !           102: *>         in a Givens rotation.
        !           103: *> \endverbatim
        !           104: *>
        !           105: *> \param[in] GIVNUM
        !           106: *> \verbatim
        !           107: *>          GIVNUM is DOUBLE PRECISION array, dimension (2, N lg N)
        !           108: *>         Each number indicates the S value to be used in the
        !           109: *>         corresponding Givens rotation.
        !           110: *> \endverbatim
        !           111: *>
        !           112: *> \param[in] Q
        !           113: *> \verbatim
        !           114: *>          Q is DOUBLE PRECISION array, dimension (N**2)
        !           115: *>         Contains the square eigenblocks from previous levels, the
        !           116: *>         starting positions for blocks are given by QPTR.
        !           117: *> \endverbatim
        !           118: *>
        !           119: *> \param[in] QPTR
        !           120: *> \verbatim
        !           121: *>          QPTR is INTEGER array, dimension (N+2)
        !           122: *>         Contains a list of pointers which indicate where in Q an
        !           123: *>         eigenblock is stored.  SQRT( QPTR(i+1) - QPTR(i) ) indicates
        !           124: *>         the size of the block.
        !           125: *> \endverbatim
        !           126: *>
        !           127: *> \param[out] Z
        !           128: *> \verbatim
        !           129: *>          Z is DOUBLE PRECISION array, dimension (N)
        !           130: *>         On output this vector contains the updating vector (the last
        !           131: *>         row of the first sub-eigenvector matrix and the first row of
        !           132: *>         the second sub-eigenvector matrix).
        !           133: *> \endverbatim
        !           134: *>
        !           135: *> \param[out] ZTEMP
        !           136: *> \verbatim
        !           137: *>          ZTEMP is DOUBLE PRECISION array, dimension (N)
        !           138: *> \endverbatim
        !           139: *>
        !           140: *> \param[out] INFO
        !           141: *> \verbatim
        !           142: *>          INFO is INTEGER
        !           143: *>          = 0:  successful exit.
        !           144: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           145: *> \endverbatim
        !           146: *
        !           147: *  Authors:
        !           148: *  ========
        !           149: *
        !           150: *> \author Univ. of Tennessee 
        !           151: *> \author Univ. of California Berkeley 
        !           152: *> \author Univ. of Colorado Denver 
        !           153: *> \author NAG Ltd. 
        !           154: *
        !           155: *> \date November 2011
        !           156: *
        !           157: *> \ingroup auxOTHERcomputational
        !           158: *
        !           159: *> \par Contributors:
        !           160: *  ==================
        !           161: *>
        !           162: *> Jeff Rutter, Computer Science Division, University of California
        !           163: *> at Berkeley, USA
        !           164: *
        !           165: *  =====================================================================
1.1       bertrand  166:       SUBROUTINE DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
                    167:      $                   GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO )
                    168: *
1.9     ! bertrand  169: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  170: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    171: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  172: *     November 2011
1.1       bertrand  173: *
                    174: *     .. Scalar Arguments ..
                    175:       INTEGER            CURLVL, CURPBM, INFO, N, TLVLS
                    176: *     ..
                    177: *     .. Array Arguments ..
                    178:       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), PERM( * ),
                    179:      $                   PRMPTR( * ), QPTR( * )
                    180:       DOUBLE PRECISION   GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * )
                    181: *     ..
                    182: *
                    183: *  =====================================================================
                    184: *
                    185: *     .. Parameters ..
                    186:       DOUBLE PRECISION   ZERO, HALF, ONE
                    187:       PARAMETER          ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 )
                    188: *     ..
                    189: *     .. Local Scalars ..
                    190:       INTEGER            BSIZ1, BSIZ2, CURR, I, K, MID, PSIZ1, PSIZ2,
                    191:      $                   PTR, ZPTR1
                    192: *     ..
                    193: *     .. External Subroutines ..
                    194:       EXTERNAL           DCOPY, DGEMV, DROT, XERBLA
                    195: *     ..
                    196: *     .. Intrinsic Functions ..
                    197:       INTRINSIC          DBLE, INT, SQRT
                    198: *     ..
                    199: *     .. Executable Statements ..
                    200: *
                    201: *     Test the input parameters.
                    202: *
                    203:       INFO = 0
                    204: *
                    205:       IF( N.LT.0 ) THEN
                    206:          INFO = -1
                    207:       END IF
                    208:       IF( INFO.NE.0 ) THEN
                    209:          CALL XERBLA( 'DLAEDA', -INFO )
                    210:          RETURN
                    211:       END IF
                    212: *
                    213: *     Quick return if possible
                    214: *
                    215:       IF( N.EQ.0 )
                    216:      $   RETURN
                    217: *
                    218: *     Determine location of first number in second half.
                    219: *
                    220:       MID = N / 2 + 1
                    221: *
                    222: *     Gather last/first rows of appropriate eigenblocks into center of Z
                    223: *
                    224:       PTR = 1
                    225: *
                    226: *     Determine location of lowest level subproblem in the full storage
                    227: *     scheme
                    228: *
                    229:       CURR = PTR + CURPBM*2**CURLVL + 2**( CURLVL-1 ) - 1
                    230: *
                    231: *     Determine size of these matrices.  We add HALF to the value of
                    232: *     the SQRT in case the machine underestimates one of these square
                    233: *     roots.
                    234: *
                    235:       BSIZ1 = INT( HALF+SQRT( DBLE( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
                    236:       BSIZ2 = INT( HALF+SQRT( DBLE( QPTR( CURR+2 )-QPTR( CURR+1 ) ) ) )
                    237:       DO 10 K = 1, MID - BSIZ1 - 1
                    238:          Z( K ) = ZERO
                    239:    10 CONTINUE
                    240:       CALL DCOPY( BSIZ1, Q( QPTR( CURR )+BSIZ1-1 ), BSIZ1,
                    241:      $            Z( MID-BSIZ1 ), 1 )
                    242:       CALL DCOPY( BSIZ2, Q( QPTR( CURR+1 ) ), BSIZ2, Z( MID ), 1 )
                    243:       DO 20 K = MID + BSIZ2, N
                    244:          Z( K ) = ZERO
                    245:    20 CONTINUE
                    246: *
1.5       bertrand  247: *     Loop through remaining levels 1 -> CURLVL applying the Givens
1.1       bertrand  248: *     rotations and permutation and then multiplying the center matrices
                    249: *     against the current Z.
                    250: *
                    251:       PTR = 2**TLVLS + 1
                    252:       DO 70 K = 1, CURLVL - 1
                    253:          CURR = PTR + CURPBM*2**( CURLVL-K ) + 2**( CURLVL-K-1 ) - 1
                    254:          PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
                    255:          PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
                    256:          ZPTR1 = MID - PSIZ1
                    257: *
                    258: *       Apply Givens at CURR and CURR+1
                    259: *
                    260:          DO 30 I = GIVPTR( CURR ), GIVPTR( CURR+1 ) - 1
                    261:             CALL DROT( 1, Z( ZPTR1+GIVCOL( 1, I )-1 ), 1,
                    262:      $                 Z( ZPTR1+GIVCOL( 2, I )-1 ), 1, GIVNUM( 1, I ),
                    263:      $                 GIVNUM( 2, I ) )
                    264:    30    CONTINUE
                    265:          DO 40 I = GIVPTR( CURR+1 ), GIVPTR( CURR+2 ) - 1
                    266:             CALL DROT( 1, Z( MID-1+GIVCOL( 1, I ) ), 1,
                    267:      $                 Z( MID-1+GIVCOL( 2, I ) ), 1, GIVNUM( 1, I ),
                    268:      $                 GIVNUM( 2, I ) )
                    269:    40    CONTINUE
                    270:          PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
                    271:          PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
                    272:          DO 50 I = 0, PSIZ1 - 1
                    273:             ZTEMP( I+1 ) = Z( ZPTR1+PERM( PRMPTR( CURR )+I )-1 )
                    274:    50    CONTINUE
                    275:          DO 60 I = 0, PSIZ2 - 1
                    276:             ZTEMP( PSIZ1+I+1 ) = Z( MID+PERM( PRMPTR( CURR+1 )+I )-1 )
                    277:    60    CONTINUE
                    278: *
                    279: *        Multiply Blocks at CURR and CURR+1
                    280: *
                    281: *        Determine size of these matrices.  We add HALF to the value of
                    282: *        the SQRT in case the machine underestimates one of these
                    283: *        square roots.
                    284: *
                    285:          BSIZ1 = INT( HALF+SQRT( DBLE( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
                    286:          BSIZ2 = INT( HALF+SQRT( DBLE( QPTR( CURR+2 )-QPTR( CURR+
                    287:      $           1 ) ) ) )
                    288:          IF( BSIZ1.GT.0 ) THEN
                    289:             CALL DGEMV( 'T', BSIZ1, BSIZ1, ONE, Q( QPTR( CURR ) ),
                    290:      $                  BSIZ1, ZTEMP( 1 ), 1, ZERO, Z( ZPTR1 ), 1 )
                    291:          END IF
                    292:          CALL DCOPY( PSIZ1-BSIZ1, ZTEMP( BSIZ1+1 ), 1, Z( ZPTR1+BSIZ1 ),
                    293:      $               1 )
                    294:          IF( BSIZ2.GT.0 ) THEN
                    295:             CALL DGEMV( 'T', BSIZ2, BSIZ2, ONE, Q( QPTR( CURR+1 ) ),
                    296:      $                  BSIZ2, ZTEMP( PSIZ1+1 ), 1, ZERO, Z( MID ), 1 )
                    297:          END IF
                    298:          CALL DCOPY( PSIZ2-BSIZ2, ZTEMP( PSIZ1+BSIZ2+1 ), 1,
                    299:      $               Z( MID+BSIZ2 ), 1 )
                    300: *
                    301:          PTR = PTR + 2**( TLVLS-K )
                    302:    70 CONTINUE
                    303: *
                    304:       RETURN
                    305: *
                    306: *     End of DLAEDA
                    307: *
                    308:       END

CVSweb interface <joel.bertrand@systella.fr>