Annotation of rpl/lapack/lapack/dlaed9.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b DLAED9
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLAED9 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed9.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed9.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed9.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W,
        !            22: *                          S, LDS, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            INFO, K, KSTART, KSTOP, LDQ, LDS, N
        !            26: *       DOUBLE PRECISION   RHO
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, * ),
        !            30: *      $                   W( * )
        !            31: *       ..
        !            32: *  
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *> DLAED9 finds the roots of the secular equation, as defined by the
        !            40: *> values in D, Z, and RHO, between KSTART and KSTOP.  It makes the
        !            41: *> appropriate calls to DLAED4 and then stores the new matrix of
        !            42: *> eigenvectors for use in calculating the next level of Z vectors.
        !            43: *> \endverbatim
        !            44: *
        !            45: *  Arguments:
        !            46: *  ==========
        !            47: *
        !            48: *> \param[in] K
        !            49: *> \verbatim
        !            50: *>          K is INTEGER
        !            51: *>          The number of terms in the rational function to be solved by
        !            52: *>          DLAED4.  K >= 0.
        !            53: *> \endverbatim
        !            54: *>
        !            55: *> \param[in] KSTART
        !            56: *> \verbatim
        !            57: *>          KSTART is INTEGER
        !            58: *> \endverbatim
        !            59: *>
        !            60: *> \param[in] KSTOP
        !            61: *> \verbatim
        !            62: *>          KSTOP is INTEGER
        !            63: *>          The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP
        !            64: *>          are to be computed.  1 <= KSTART <= KSTOP <= K.
        !            65: *> \endverbatim
        !            66: *>
        !            67: *> \param[in] N
        !            68: *> \verbatim
        !            69: *>          N is INTEGER
        !            70: *>          The number of rows and columns in the Q matrix.
        !            71: *>          N >= K (delation may result in N > K).
        !            72: *> \endverbatim
        !            73: *>
        !            74: *> \param[out] D
        !            75: *> \verbatim
        !            76: *>          D is DOUBLE PRECISION array, dimension (N)
        !            77: *>          D(I) contains the updated eigenvalues
        !            78: *>          for KSTART <= I <= KSTOP.
        !            79: *> \endverbatim
        !            80: *>
        !            81: *> \param[out] Q
        !            82: *> \verbatim
        !            83: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
        !            84: *> \endverbatim
        !            85: *>
        !            86: *> \param[in] LDQ
        !            87: *> \verbatim
        !            88: *>          LDQ is INTEGER
        !            89: *>          The leading dimension of the array Q.  LDQ >= max( 1, N ).
        !            90: *> \endverbatim
        !            91: *>
        !            92: *> \param[in] RHO
        !            93: *> \verbatim
        !            94: *>          RHO is DOUBLE PRECISION
        !            95: *>          The value of the parameter in the rank one update equation.
        !            96: *>          RHO >= 0 required.
        !            97: *> \endverbatim
        !            98: *>
        !            99: *> \param[in] DLAMDA
        !           100: *> \verbatim
        !           101: *>          DLAMDA is DOUBLE PRECISION array, dimension (K)
        !           102: *>          The first K elements of this array contain the old roots
        !           103: *>          of the deflated updating problem.  These are the poles
        !           104: *>          of the secular equation.
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[in] W
        !           108: *> \verbatim
        !           109: *>          W is DOUBLE PRECISION array, dimension (K)
        !           110: *>          The first K elements of this array contain the components
        !           111: *>          of the deflation-adjusted updating vector.
        !           112: *> \endverbatim
        !           113: *>
        !           114: *> \param[out] S
        !           115: *> \verbatim
        !           116: *>          S is DOUBLE PRECISION array, dimension (LDS, K)
        !           117: *>          Will contain the eigenvectors of the repaired matrix which
        !           118: *>          will be stored for subsequent Z vector calculation and
        !           119: *>          multiplied by the previously accumulated eigenvectors
        !           120: *>          to update the system.
        !           121: *> \endverbatim
        !           122: *>
        !           123: *> \param[in] LDS
        !           124: *> \verbatim
        !           125: *>          LDS is INTEGER
        !           126: *>          The leading dimension of S.  LDS >= max( 1, K ).
        !           127: *> \endverbatim
        !           128: *>
        !           129: *> \param[out] INFO
        !           130: *> \verbatim
        !           131: *>          INFO is INTEGER
        !           132: *>          = 0:  successful exit.
        !           133: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           134: *>          > 0:  if INFO = 1, an eigenvalue did not converge
        !           135: *> \endverbatim
        !           136: *
        !           137: *  Authors:
        !           138: *  ========
        !           139: *
        !           140: *> \author Univ. of Tennessee 
        !           141: *> \author Univ. of California Berkeley 
        !           142: *> \author Univ. of Colorado Denver 
        !           143: *> \author NAG Ltd. 
        !           144: *
        !           145: *> \date November 2011
        !           146: *
        !           147: *> \ingroup auxOTHERcomputational
        !           148: *
        !           149: *> \par Contributors:
        !           150: *  ==================
        !           151: *>
        !           152: *> Jeff Rutter, Computer Science Division, University of California
        !           153: *> at Berkeley, USA
        !           154: *
        !           155: *  =====================================================================
1.1       bertrand  156:       SUBROUTINE DLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W,
                    157:      $                   S, LDS, INFO )
                    158: *
1.8     ! bertrand  159: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  160: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    161: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  162: *     November 2011
1.1       bertrand  163: *
                    164: *     .. Scalar Arguments ..
                    165:       INTEGER            INFO, K, KSTART, KSTOP, LDQ, LDS, N
                    166:       DOUBLE PRECISION   RHO
                    167: *     ..
                    168: *     .. Array Arguments ..
                    169:       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, * ),
                    170:      $                   W( * )
                    171: *     ..
                    172: *
                    173: *  =====================================================================
                    174: *
                    175: *     .. Local Scalars ..
                    176:       INTEGER            I, J
                    177:       DOUBLE PRECISION   TEMP
                    178: *     ..
                    179: *     .. External Functions ..
                    180:       DOUBLE PRECISION   DLAMC3, DNRM2
                    181:       EXTERNAL           DLAMC3, DNRM2
                    182: *     ..
                    183: *     .. External Subroutines ..
                    184:       EXTERNAL           DCOPY, DLAED4, XERBLA
                    185: *     ..
                    186: *     .. Intrinsic Functions ..
                    187:       INTRINSIC          MAX, SIGN, SQRT
                    188: *     ..
                    189: *     .. Executable Statements ..
                    190: *
                    191: *     Test the input parameters.
                    192: *
                    193:       INFO = 0
                    194: *
                    195:       IF( K.LT.0 ) THEN
                    196:          INFO = -1
                    197:       ELSE IF( KSTART.LT.1 .OR. KSTART.GT.MAX( 1, K ) ) THEN
                    198:          INFO = -2
                    199:       ELSE IF( MAX( 1, KSTOP ).LT.KSTART .OR. KSTOP.GT.MAX( 1, K ) )
                    200:      $          THEN
                    201:          INFO = -3
                    202:       ELSE IF( N.LT.K ) THEN
                    203:          INFO = -4
                    204:       ELSE IF( LDQ.LT.MAX( 1, K ) ) THEN
                    205:          INFO = -7
                    206:       ELSE IF( LDS.LT.MAX( 1, K ) ) THEN
                    207:          INFO = -12
                    208:       END IF
                    209:       IF( INFO.NE.0 ) THEN
                    210:          CALL XERBLA( 'DLAED9', -INFO )
                    211:          RETURN
                    212:       END IF
                    213: *
                    214: *     Quick return if possible
                    215: *
                    216:       IF( K.EQ.0 )
                    217:      $   RETURN
                    218: *
                    219: *     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
                    220: *     be computed with high relative accuracy (barring over/underflow).
                    221: *     This is a problem on machines without a guard digit in
                    222: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
                    223: *     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
                    224: *     which on any of these machines zeros out the bottommost
                    225: *     bit of DLAMDA(I) if it is 1; this makes the subsequent
                    226: *     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
                    227: *     occurs. On binary machines with a guard digit (almost all
                    228: *     machines) it does not change DLAMDA(I) at all. On hexadecimal
                    229: *     and decimal machines with a guard digit, it slightly
                    230: *     changes the bottommost bits of DLAMDA(I). It does not account
                    231: *     for hexadecimal or decimal machines without guard digits
                    232: *     (we know of none). We use a subroutine call to compute
                    233: *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
                    234: *     this code.
                    235: *
                    236:       DO 10 I = 1, N
                    237:          DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
                    238:    10 CONTINUE
                    239: *
                    240:       DO 20 J = KSTART, KSTOP
                    241:          CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
                    242: *
                    243: *        If the zero finder fails, the computation is terminated.
                    244: *
                    245:          IF( INFO.NE.0 )
                    246:      $      GO TO 120
                    247:    20 CONTINUE
                    248: *
                    249:       IF( K.EQ.1 .OR. K.EQ.2 ) THEN
                    250:          DO 40 I = 1, K
                    251:             DO 30 J = 1, K
                    252:                S( J, I ) = Q( J, I )
                    253:    30       CONTINUE
                    254:    40    CONTINUE
                    255:          GO TO 120
                    256:       END IF
                    257: *
                    258: *     Compute updated W.
                    259: *
                    260:       CALL DCOPY( K, W, 1, S, 1 )
                    261: *
                    262: *     Initialize W(I) = Q(I,I)
                    263: *
                    264:       CALL DCOPY( K, Q, LDQ+1, W, 1 )
                    265:       DO 70 J = 1, K
                    266:          DO 50 I = 1, J - 1
                    267:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
                    268:    50    CONTINUE
                    269:          DO 60 I = J + 1, K
                    270:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
                    271:    60    CONTINUE
                    272:    70 CONTINUE
                    273:       DO 80 I = 1, K
                    274:          W( I ) = SIGN( SQRT( -W( I ) ), S( I, 1 ) )
                    275:    80 CONTINUE
                    276: *
                    277: *     Compute eigenvectors of the modified rank-1 modification.
                    278: *
                    279:       DO 110 J = 1, K
                    280:          DO 90 I = 1, K
                    281:             Q( I, J ) = W( I ) / Q( I, J )
                    282:    90    CONTINUE
                    283:          TEMP = DNRM2( K, Q( 1, J ), 1 )
                    284:          DO 100 I = 1, K
                    285:             S( I, J ) = Q( I, J ) / TEMP
                    286:   100    CONTINUE
                    287:   110 CONTINUE
                    288: *
                    289:   120 CONTINUE
                    290:       RETURN
                    291: *
                    292: *     End of DLAED9
                    293: *
                    294:       END

CVSweb interface <joel.bertrand@systella.fr>