Annotation of rpl/lapack/lapack/dlaed9.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE DLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W,
                      2:      $                   S, LDS, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            INFO, K, KSTART, KSTOP, LDQ, LDS, N
                     11:       DOUBLE PRECISION   RHO
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, * ),
                     15:      $                   W( * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  DLAED9 finds the roots of the secular equation, as defined by the
                     22: *  values in D, Z, and RHO, between KSTART and KSTOP.  It makes the
                     23: *  appropriate calls to DLAED4 and then stores the new matrix of
                     24: *  eigenvectors for use in calculating the next level of Z vectors.
                     25: *
                     26: *  Arguments
                     27: *  =========
                     28: *
                     29: *  K       (input) INTEGER
                     30: *          The number of terms in the rational function to be solved by
                     31: *          DLAED4.  K >= 0.
                     32: *
                     33: *  KSTART  (input) INTEGER
                     34: *  KSTOP   (input) INTEGER
                     35: *          The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP
                     36: *          are to be computed.  1 <= KSTART <= KSTOP <= K.
                     37: *
                     38: *  N       (input) INTEGER
                     39: *          The number of rows and columns in the Q matrix.
                     40: *          N >= K (delation may result in N > K).
                     41: *
                     42: *  D       (output) DOUBLE PRECISION array, dimension (N)
                     43: *          D(I) contains the updated eigenvalues
                     44: *          for KSTART <= I <= KSTOP.
                     45: *
                     46: *  Q       (workspace) DOUBLE PRECISION array, dimension (LDQ,N)
                     47: *
                     48: *  LDQ     (input) INTEGER
                     49: *          The leading dimension of the array Q.  LDQ >= max( 1, N ).
                     50: *
                     51: *  RHO     (input) DOUBLE PRECISION
                     52: *          The value of the parameter in the rank one update equation.
                     53: *          RHO >= 0 required.
                     54: *
                     55: *  DLAMDA  (input) DOUBLE PRECISION array, dimension (K)
                     56: *          The first K elements of this array contain the old roots
                     57: *          of the deflated updating problem.  These are the poles
                     58: *          of the secular equation.
                     59: *
                     60: *  W       (input) DOUBLE PRECISION array, dimension (K)
                     61: *          The first K elements of this array contain the components
                     62: *          of the deflation-adjusted updating vector.
                     63: *
                     64: *  S       (output) DOUBLE PRECISION array, dimension (LDS, K)
                     65: *          Will contain the eigenvectors of the repaired matrix which
                     66: *          will be stored for subsequent Z vector calculation and
                     67: *          multiplied by the previously accumulated eigenvectors
                     68: *          to update the system.
                     69: *
                     70: *  LDS     (input) INTEGER
                     71: *          The leading dimension of S.  LDS >= max( 1, K ).
                     72: *
                     73: *  INFO    (output) INTEGER
                     74: *          = 0:  successful exit.
                     75: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                     76: *          > 0:  if INFO = 1, an eigenvalue did not converge
                     77: *
                     78: *  Further Details
                     79: *  ===============
                     80: *
                     81: *  Based on contributions by
                     82: *     Jeff Rutter, Computer Science Division, University of California
                     83: *     at Berkeley, USA
                     84: *
                     85: *  =====================================================================
                     86: *
                     87: *     .. Local Scalars ..
                     88:       INTEGER            I, J
                     89:       DOUBLE PRECISION   TEMP
                     90: *     ..
                     91: *     .. External Functions ..
                     92:       DOUBLE PRECISION   DLAMC3, DNRM2
                     93:       EXTERNAL           DLAMC3, DNRM2
                     94: *     ..
                     95: *     .. External Subroutines ..
                     96:       EXTERNAL           DCOPY, DLAED4, XERBLA
                     97: *     ..
                     98: *     .. Intrinsic Functions ..
                     99:       INTRINSIC          MAX, SIGN, SQRT
                    100: *     ..
                    101: *     .. Executable Statements ..
                    102: *
                    103: *     Test the input parameters.
                    104: *
                    105:       INFO = 0
                    106: *
                    107:       IF( K.LT.0 ) THEN
                    108:          INFO = -1
                    109:       ELSE IF( KSTART.LT.1 .OR. KSTART.GT.MAX( 1, K ) ) THEN
                    110:          INFO = -2
                    111:       ELSE IF( MAX( 1, KSTOP ).LT.KSTART .OR. KSTOP.GT.MAX( 1, K ) )
                    112:      $          THEN
                    113:          INFO = -3
                    114:       ELSE IF( N.LT.K ) THEN
                    115:          INFO = -4
                    116:       ELSE IF( LDQ.LT.MAX( 1, K ) ) THEN
                    117:          INFO = -7
                    118:       ELSE IF( LDS.LT.MAX( 1, K ) ) THEN
                    119:          INFO = -12
                    120:       END IF
                    121:       IF( INFO.NE.0 ) THEN
                    122:          CALL XERBLA( 'DLAED9', -INFO )
                    123:          RETURN
                    124:       END IF
                    125: *
                    126: *     Quick return if possible
                    127: *
                    128:       IF( K.EQ.0 )
                    129:      $   RETURN
                    130: *
                    131: *     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
                    132: *     be computed with high relative accuracy (barring over/underflow).
                    133: *     This is a problem on machines without a guard digit in
                    134: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
                    135: *     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
                    136: *     which on any of these machines zeros out the bottommost
                    137: *     bit of DLAMDA(I) if it is 1; this makes the subsequent
                    138: *     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
                    139: *     occurs. On binary machines with a guard digit (almost all
                    140: *     machines) it does not change DLAMDA(I) at all. On hexadecimal
                    141: *     and decimal machines with a guard digit, it slightly
                    142: *     changes the bottommost bits of DLAMDA(I). It does not account
                    143: *     for hexadecimal or decimal machines without guard digits
                    144: *     (we know of none). We use a subroutine call to compute
                    145: *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
                    146: *     this code.
                    147: *
                    148:       DO 10 I = 1, N
                    149:          DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
                    150:    10 CONTINUE
                    151: *
                    152:       DO 20 J = KSTART, KSTOP
                    153:          CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
                    154: *
                    155: *        If the zero finder fails, the computation is terminated.
                    156: *
                    157:          IF( INFO.NE.0 )
                    158:      $      GO TO 120
                    159:    20 CONTINUE
                    160: *
                    161:       IF( K.EQ.1 .OR. K.EQ.2 ) THEN
                    162:          DO 40 I = 1, K
                    163:             DO 30 J = 1, K
                    164:                S( J, I ) = Q( J, I )
                    165:    30       CONTINUE
                    166:    40    CONTINUE
                    167:          GO TO 120
                    168:       END IF
                    169: *
                    170: *     Compute updated W.
                    171: *
                    172:       CALL DCOPY( K, W, 1, S, 1 )
                    173: *
                    174: *     Initialize W(I) = Q(I,I)
                    175: *
                    176:       CALL DCOPY( K, Q, LDQ+1, W, 1 )
                    177:       DO 70 J = 1, K
                    178:          DO 50 I = 1, J - 1
                    179:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
                    180:    50    CONTINUE
                    181:          DO 60 I = J + 1, K
                    182:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
                    183:    60    CONTINUE
                    184:    70 CONTINUE
                    185:       DO 80 I = 1, K
                    186:          W( I ) = SIGN( SQRT( -W( I ) ), S( I, 1 ) )
                    187:    80 CONTINUE
                    188: *
                    189: *     Compute eigenvectors of the modified rank-1 modification.
                    190: *
                    191:       DO 110 J = 1, K
                    192:          DO 90 I = 1, K
                    193:             Q( I, J ) = W( I ) / Q( I, J )
                    194:    90    CONTINUE
                    195:          TEMP = DNRM2( K, Q( 1, J ), 1 )
                    196:          DO 100 I = 1, K
                    197:             S( I, J ) = Q( I, J ) / TEMP
                    198:   100    CONTINUE
                    199:   110 CONTINUE
                    200: *
                    201:   120 CONTINUE
                    202:       RETURN
                    203: *
                    204: *     End of DLAED9
                    205: *
                    206:       END

CVSweb interface <joel.bertrand@systella.fr>