Annotation of rpl/lapack/lapack/dlaed9.f, revision 1.18

1.18    ! bertrand    1: *> \brief \b DLAED9 used by DSTEDC. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is dense.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DLAED9 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed9.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed9.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed9.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W,
                     22: *                          S, LDS, INFO )
1.15      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, K, KSTART, KSTOP, LDQ, LDS, N
                     26: *       DOUBLE PRECISION   RHO
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, * ),
                     30: *      $                   W( * )
                     31: *       ..
1.15      bertrand   32: *
1.8       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DLAED9 finds the roots of the secular equation, as defined by the
                     40: *> values in D, Z, and RHO, between KSTART and KSTOP.  It makes the
                     41: *> appropriate calls to DLAED4 and then stores the new matrix of
                     42: *> eigenvectors for use in calculating the next level of Z vectors.
                     43: *> \endverbatim
                     44: *
                     45: *  Arguments:
                     46: *  ==========
                     47: *
                     48: *> \param[in] K
                     49: *> \verbatim
                     50: *>          K is INTEGER
                     51: *>          The number of terms in the rational function to be solved by
                     52: *>          DLAED4.  K >= 0.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] KSTART
                     56: *> \verbatim
                     57: *>          KSTART is INTEGER
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] KSTOP
                     61: *> \verbatim
                     62: *>          KSTOP is INTEGER
                     63: *>          The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP
                     64: *>          are to be computed.  1 <= KSTART <= KSTOP <= K.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] N
                     68: *> \verbatim
                     69: *>          N is INTEGER
                     70: *>          The number of rows and columns in the Q matrix.
                     71: *>          N >= K (delation may result in N > K).
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[out] D
                     75: *> \verbatim
                     76: *>          D is DOUBLE PRECISION array, dimension (N)
                     77: *>          D(I) contains the updated eigenvalues
                     78: *>          for KSTART <= I <= KSTOP.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[out] Q
                     82: *> \verbatim
                     83: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] LDQ
                     87: *> \verbatim
                     88: *>          LDQ is INTEGER
                     89: *>          The leading dimension of the array Q.  LDQ >= max( 1, N ).
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] RHO
                     93: *> \verbatim
                     94: *>          RHO is DOUBLE PRECISION
                     95: *>          The value of the parameter in the rank one update equation.
                     96: *>          RHO >= 0 required.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] DLAMDA
                    100: *> \verbatim
                    101: *>          DLAMDA is DOUBLE PRECISION array, dimension (K)
                    102: *>          The first K elements of this array contain the old roots
                    103: *>          of the deflated updating problem.  These are the poles
                    104: *>          of the secular equation.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] W
                    108: *> \verbatim
                    109: *>          W is DOUBLE PRECISION array, dimension (K)
                    110: *>          The first K elements of this array contain the components
                    111: *>          of the deflation-adjusted updating vector.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[out] S
                    115: *> \verbatim
                    116: *>          S is DOUBLE PRECISION array, dimension (LDS, K)
                    117: *>          Will contain the eigenvectors of the repaired matrix which
                    118: *>          will be stored for subsequent Z vector calculation and
                    119: *>          multiplied by the previously accumulated eigenvectors
                    120: *>          to update the system.
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[in] LDS
                    124: *> \verbatim
                    125: *>          LDS is INTEGER
                    126: *>          The leading dimension of S.  LDS >= max( 1, K ).
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[out] INFO
                    130: *> \verbatim
                    131: *>          INFO is INTEGER
                    132: *>          = 0:  successful exit.
                    133: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    134: *>          > 0:  if INFO = 1, an eigenvalue did not converge
                    135: *> \endverbatim
                    136: *
                    137: *  Authors:
                    138: *  ========
                    139: *
1.15      bertrand  140: *> \author Univ. of Tennessee
                    141: *> \author Univ. of California Berkeley
                    142: *> \author Univ. of Colorado Denver
                    143: *> \author NAG Ltd.
1.8       bertrand  144: *
                    145: *> \ingroup auxOTHERcomputational
                    146: *
                    147: *> \par Contributors:
                    148: *  ==================
                    149: *>
                    150: *> Jeff Rutter, Computer Science Division, University of California
                    151: *> at Berkeley, USA
                    152: *
                    153: *  =====================================================================
1.1       bertrand  154:       SUBROUTINE DLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W,
                    155:      $                   S, LDS, INFO )
                    156: *
1.18    ! bertrand  157: *  -- LAPACK computational routine --
1.1       bertrand  158: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    159: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    160: *
                    161: *     .. Scalar Arguments ..
                    162:       INTEGER            INFO, K, KSTART, KSTOP, LDQ, LDS, N
                    163:       DOUBLE PRECISION   RHO
                    164: *     ..
                    165: *     .. Array Arguments ..
                    166:       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, * ),
                    167:      $                   W( * )
                    168: *     ..
                    169: *
                    170: *  =====================================================================
                    171: *
                    172: *     .. Local Scalars ..
                    173:       INTEGER            I, J
                    174:       DOUBLE PRECISION   TEMP
                    175: *     ..
                    176: *     .. External Functions ..
                    177:       DOUBLE PRECISION   DLAMC3, DNRM2
                    178:       EXTERNAL           DLAMC3, DNRM2
                    179: *     ..
                    180: *     .. External Subroutines ..
                    181:       EXTERNAL           DCOPY, DLAED4, XERBLA
                    182: *     ..
                    183: *     .. Intrinsic Functions ..
                    184:       INTRINSIC          MAX, SIGN, SQRT
                    185: *     ..
                    186: *     .. Executable Statements ..
                    187: *
                    188: *     Test the input parameters.
                    189: *
                    190:       INFO = 0
                    191: *
                    192:       IF( K.LT.0 ) THEN
                    193:          INFO = -1
                    194:       ELSE IF( KSTART.LT.1 .OR. KSTART.GT.MAX( 1, K ) ) THEN
                    195:          INFO = -2
                    196:       ELSE IF( MAX( 1, KSTOP ).LT.KSTART .OR. KSTOP.GT.MAX( 1, K ) )
                    197:      $          THEN
                    198:          INFO = -3
                    199:       ELSE IF( N.LT.K ) THEN
                    200:          INFO = -4
                    201:       ELSE IF( LDQ.LT.MAX( 1, K ) ) THEN
                    202:          INFO = -7
                    203:       ELSE IF( LDS.LT.MAX( 1, K ) ) THEN
                    204:          INFO = -12
                    205:       END IF
                    206:       IF( INFO.NE.0 ) THEN
                    207:          CALL XERBLA( 'DLAED9', -INFO )
                    208:          RETURN
                    209:       END IF
                    210: *
                    211: *     Quick return if possible
                    212: *
                    213:       IF( K.EQ.0 )
                    214:      $   RETURN
                    215: *
                    216: *     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
                    217: *     be computed with high relative accuracy (barring over/underflow).
                    218: *     This is a problem on machines without a guard digit in
                    219: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
                    220: *     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
                    221: *     which on any of these machines zeros out the bottommost
                    222: *     bit of DLAMDA(I) if it is 1; this makes the subsequent
                    223: *     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
                    224: *     occurs. On binary machines with a guard digit (almost all
                    225: *     machines) it does not change DLAMDA(I) at all. On hexadecimal
                    226: *     and decimal machines with a guard digit, it slightly
                    227: *     changes the bottommost bits of DLAMDA(I). It does not account
                    228: *     for hexadecimal or decimal machines without guard digits
                    229: *     (we know of none). We use a subroutine call to compute
                    230: *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
                    231: *     this code.
                    232: *
                    233:       DO 10 I = 1, N
                    234:          DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
                    235:    10 CONTINUE
                    236: *
                    237:       DO 20 J = KSTART, KSTOP
                    238:          CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
                    239: *
                    240: *        If the zero finder fails, the computation is terminated.
                    241: *
                    242:          IF( INFO.NE.0 )
                    243:      $      GO TO 120
                    244:    20 CONTINUE
                    245: *
                    246:       IF( K.EQ.1 .OR. K.EQ.2 ) THEN
                    247:          DO 40 I = 1, K
                    248:             DO 30 J = 1, K
                    249:                S( J, I ) = Q( J, I )
                    250:    30       CONTINUE
                    251:    40    CONTINUE
                    252:          GO TO 120
                    253:       END IF
                    254: *
                    255: *     Compute updated W.
                    256: *
                    257:       CALL DCOPY( K, W, 1, S, 1 )
                    258: *
                    259: *     Initialize W(I) = Q(I,I)
                    260: *
                    261:       CALL DCOPY( K, Q, LDQ+1, W, 1 )
                    262:       DO 70 J = 1, K
                    263:          DO 50 I = 1, J - 1
                    264:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
                    265:    50    CONTINUE
                    266:          DO 60 I = J + 1, K
                    267:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
                    268:    60    CONTINUE
                    269:    70 CONTINUE
                    270:       DO 80 I = 1, K
                    271:          W( I ) = SIGN( SQRT( -W( I ) ), S( I, 1 ) )
                    272:    80 CONTINUE
                    273: *
                    274: *     Compute eigenvectors of the modified rank-1 modification.
                    275: *
                    276:       DO 110 J = 1, K
                    277:          DO 90 I = 1, K
                    278:             Q( I, J ) = W( I ) / Q( I, J )
                    279:    90    CONTINUE
                    280:          TEMP = DNRM2( K, Q( 1, J ), 1 )
                    281:          DO 100 I = 1, K
                    282:             S( I, J ) = Q( I, J ) / TEMP
                    283:   100    CONTINUE
                    284:   110 CONTINUE
                    285: *
                    286:   120 CONTINUE
                    287:       RETURN
                    288: *
                    289: *     End of DLAED9
                    290: *
                    291:       END

CVSweb interface <joel.bertrand@systella.fr>