Annotation of rpl/lapack/lapack/dlaed9.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W,
        !             2:      $                   S, LDS, INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            INFO, K, KSTART, KSTOP, LDQ, LDS, N
        !            11:       DOUBLE PRECISION   RHO
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, * ),
        !            15:      $                   W( * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  DLAED9 finds the roots of the secular equation, as defined by the
        !            22: *  values in D, Z, and RHO, between KSTART and KSTOP.  It makes the
        !            23: *  appropriate calls to DLAED4 and then stores the new matrix of
        !            24: *  eigenvectors for use in calculating the next level of Z vectors.
        !            25: *
        !            26: *  Arguments
        !            27: *  =========
        !            28: *
        !            29: *  K       (input) INTEGER
        !            30: *          The number of terms in the rational function to be solved by
        !            31: *          DLAED4.  K >= 0.
        !            32: *
        !            33: *  KSTART  (input) INTEGER
        !            34: *  KSTOP   (input) INTEGER
        !            35: *          The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP
        !            36: *          are to be computed.  1 <= KSTART <= KSTOP <= K.
        !            37: *
        !            38: *  N       (input) INTEGER
        !            39: *          The number of rows and columns in the Q matrix.
        !            40: *          N >= K (delation may result in N > K).
        !            41: *
        !            42: *  D       (output) DOUBLE PRECISION array, dimension (N)
        !            43: *          D(I) contains the updated eigenvalues
        !            44: *          for KSTART <= I <= KSTOP.
        !            45: *
        !            46: *  Q       (workspace) DOUBLE PRECISION array, dimension (LDQ,N)
        !            47: *
        !            48: *  LDQ     (input) INTEGER
        !            49: *          The leading dimension of the array Q.  LDQ >= max( 1, N ).
        !            50: *
        !            51: *  RHO     (input) DOUBLE PRECISION
        !            52: *          The value of the parameter in the rank one update equation.
        !            53: *          RHO >= 0 required.
        !            54: *
        !            55: *  DLAMDA  (input) DOUBLE PRECISION array, dimension (K)
        !            56: *          The first K elements of this array contain the old roots
        !            57: *          of the deflated updating problem.  These are the poles
        !            58: *          of the secular equation.
        !            59: *
        !            60: *  W       (input) DOUBLE PRECISION array, dimension (K)
        !            61: *          The first K elements of this array contain the components
        !            62: *          of the deflation-adjusted updating vector.
        !            63: *
        !            64: *  S       (output) DOUBLE PRECISION array, dimension (LDS, K)
        !            65: *          Will contain the eigenvectors of the repaired matrix which
        !            66: *          will be stored for subsequent Z vector calculation and
        !            67: *          multiplied by the previously accumulated eigenvectors
        !            68: *          to update the system.
        !            69: *
        !            70: *  LDS     (input) INTEGER
        !            71: *          The leading dimension of S.  LDS >= max( 1, K ).
        !            72: *
        !            73: *  INFO    (output) INTEGER
        !            74: *          = 0:  successful exit.
        !            75: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !            76: *          > 0:  if INFO = 1, an eigenvalue did not converge
        !            77: *
        !            78: *  Further Details
        !            79: *  ===============
        !            80: *
        !            81: *  Based on contributions by
        !            82: *     Jeff Rutter, Computer Science Division, University of California
        !            83: *     at Berkeley, USA
        !            84: *
        !            85: *  =====================================================================
        !            86: *
        !            87: *     .. Local Scalars ..
        !            88:       INTEGER            I, J
        !            89:       DOUBLE PRECISION   TEMP
        !            90: *     ..
        !            91: *     .. External Functions ..
        !            92:       DOUBLE PRECISION   DLAMC3, DNRM2
        !            93:       EXTERNAL           DLAMC3, DNRM2
        !            94: *     ..
        !            95: *     .. External Subroutines ..
        !            96:       EXTERNAL           DCOPY, DLAED4, XERBLA
        !            97: *     ..
        !            98: *     .. Intrinsic Functions ..
        !            99:       INTRINSIC          MAX, SIGN, SQRT
        !           100: *     ..
        !           101: *     .. Executable Statements ..
        !           102: *
        !           103: *     Test the input parameters.
        !           104: *
        !           105:       INFO = 0
        !           106: *
        !           107:       IF( K.LT.0 ) THEN
        !           108:          INFO = -1
        !           109:       ELSE IF( KSTART.LT.1 .OR. KSTART.GT.MAX( 1, K ) ) THEN
        !           110:          INFO = -2
        !           111:       ELSE IF( MAX( 1, KSTOP ).LT.KSTART .OR. KSTOP.GT.MAX( 1, K ) )
        !           112:      $          THEN
        !           113:          INFO = -3
        !           114:       ELSE IF( N.LT.K ) THEN
        !           115:          INFO = -4
        !           116:       ELSE IF( LDQ.LT.MAX( 1, K ) ) THEN
        !           117:          INFO = -7
        !           118:       ELSE IF( LDS.LT.MAX( 1, K ) ) THEN
        !           119:          INFO = -12
        !           120:       END IF
        !           121:       IF( INFO.NE.0 ) THEN
        !           122:          CALL XERBLA( 'DLAED9', -INFO )
        !           123:          RETURN
        !           124:       END IF
        !           125: *
        !           126: *     Quick return if possible
        !           127: *
        !           128:       IF( K.EQ.0 )
        !           129:      $   RETURN
        !           130: *
        !           131: *     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
        !           132: *     be computed with high relative accuracy (barring over/underflow).
        !           133: *     This is a problem on machines without a guard digit in
        !           134: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
        !           135: *     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
        !           136: *     which on any of these machines zeros out the bottommost
        !           137: *     bit of DLAMDA(I) if it is 1; this makes the subsequent
        !           138: *     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
        !           139: *     occurs. On binary machines with a guard digit (almost all
        !           140: *     machines) it does not change DLAMDA(I) at all. On hexadecimal
        !           141: *     and decimal machines with a guard digit, it slightly
        !           142: *     changes the bottommost bits of DLAMDA(I). It does not account
        !           143: *     for hexadecimal or decimal machines without guard digits
        !           144: *     (we know of none). We use a subroutine call to compute
        !           145: *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
        !           146: *     this code.
        !           147: *
        !           148:       DO 10 I = 1, N
        !           149:          DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
        !           150:    10 CONTINUE
        !           151: *
        !           152:       DO 20 J = KSTART, KSTOP
        !           153:          CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
        !           154: *
        !           155: *        If the zero finder fails, the computation is terminated.
        !           156: *
        !           157:          IF( INFO.NE.0 )
        !           158:      $      GO TO 120
        !           159:    20 CONTINUE
        !           160: *
        !           161:       IF( K.EQ.1 .OR. K.EQ.2 ) THEN
        !           162:          DO 40 I = 1, K
        !           163:             DO 30 J = 1, K
        !           164:                S( J, I ) = Q( J, I )
        !           165:    30       CONTINUE
        !           166:    40    CONTINUE
        !           167:          GO TO 120
        !           168:       END IF
        !           169: *
        !           170: *     Compute updated W.
        !           171: *
        !           172:       CALL DCOPY( K, W, 1, S, 1 )
        !           173: *
        !           174: *     Initialize W(I) = Q(I,I)
        !           175: *
        !           176:       CALL DCOPY( K, Q, LDQ+1, W, 1 )
        !           177:       DO 70 J = 1, K
        !           178:          DO 50 I = 1, J - 1
        !           179:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
        !           180:    50    CONTINUE
        !           181:          DO 60 I = J + 1, K
        !           182:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
        !           183:    60    CONTINUE
        !           184:    70 CONTINUE
        !           185:       DO 80 I = 1, K
        !           186:          W( I ) = SIGN( SQRT( -W( I ) ), S( I, 1 ) )
        !           187:    80 CONTINUE
        !           188: *
        !           189: *     Compute eigenvectors of the modified rank-1 modification.
        !           190: *
        !           191:       DO 110 J = 1, K
        !           192:          DO 90 I = 1, K
        !           193:             Q( I, J ) = W( I ) / Q( I, J )
        !           194:    90    CONTINUE
        !           195:          TEMP = DNRM2( K, Q( 1, J ), 1 )
        !           196:          DO 100 I = 1, K
        !           197:             S( I, J ) = Q( I, J ) / TEMP
        !           198:   100    CONTINUE
        !           199:   110 CONTINUE
        !           200: *
        !           201:   120 CONTINUE
        !           202:       RETURN
        !           203: *
        !           204: *     End of DLAED9
        !           205: *
        !           206:       END

CVSweb interface <joel.bertrand@systella.fr>