File:  [local] / rpl / lapack / lapack / dlaed8.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:17 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO,
    2:      $                   CUTPNT, Z, DLAMDA, Q2, LDQ2, W, PERM, GIVPTR,
    3:      $                   GIVCOL, GIVNUM, INDXP, INDX, INFO )
    4: *
    5: *  -- LAPACK routine (version 3.2.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     June 2010
    9: *
   10: *     .. Scalar Arguments ..
   11:       INTEGER            CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N,
   12:      $                   QSIZ
   13:       DOUBLE PRECISION   RHO
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            GIVCOL( 2, * ), INDX( * ), INDXP( * ),
   17:      $                   INDXQ( * ), PERM( * )
   18:       DOUBLE PRECISION   D( * ), DLAMDA( * ), GIVNUM( 2, * ),
   19:      $                   Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  DLAED8 merges the two sets of eigenvalues together into a single
   26: *  sorted set.  Then it tries to deflate the size of the problem.
   27: *  There are two ways in which deflation can occur:  when two or more
   28: *  eigenvalues are close together or if there is a tiny element in the
   29: *  Z vector.  For each such occurrence the order of the related secular
   30: *  equation problem is reduced by one.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *  ICOMPQ  (input) INTEGER
   36: *          = 0:  Compute eigenvalues only.
   37: *          = 1:  Compute eigenvectors of original dense symmetric matrix
   38: *                also.  On entry, Q contains the orthogonal matrix used
   39: *                to reduce the original matrix to tridiagonal form.
   40: *
   41: *  K      (output) INTEGER
   42: *         The number of non-deflated eigenvalues, and the order of the
   43: *         related secular equation.
   44: *
   45: *  N      (input) INTEGER
   46: *         The dimension of the symmetric tridiagonal matrix.  N >= 0.
   47: *
   48: *  QSIZ   (input) INTEGER
   49: *         The dimension of the orthogonal matrix used to reduce
   50: *         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
   51: *
   52: *  D      (input/output) DOUBLE PRECISION array, dimension (N)
   53: *         On entry, the eigenvalues of the two submatrices to be
   54: *         combined.  On exit, the trailing (N-K) updated eigenvalues
   55: *         (those which were deflated) sorted into increasing order.
   56: *
   57: *  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
   58: *         If ICOMPQ = 0, Q is not referenced.  Otherwise,
   59: *         on entry, Q contains the eigenvectors of the partially solved
   60: *         system which has been previously updated in matrix
   61: *         multiplies with other partially solved eigensystems.
   62: *         On exit, Q contains the trailing (N-K) updated eigenvectors
   63: *         (those which were deflated) in its last N-K columns.
   64: *
   65: *  LDQ    (input) INTEGER
   66: *         The leading dimension of the array Q.  LDQ >= max(1,N).
   67: *
   68: *  INDXQ  (input) INTEGER array, dimension (N)
   69: *         The permutation which separately sorts the two sub-problems
   70: *         in D into ascending order.  Note that elements in the second
   71: *         half of this permutation must first have CUTPNT added to
   72: *         their values in order to be accurate.
   73: *
   74: *  RHO    (input/output) DOUBLE PRECISION
   75: *         On entry, the off-diagonal element associated with the rank-1
   76: *         cut which originally split the two submatrices which are now
   77: *         being recombined.
   78: *         On exit, RHO has been modified to the value required by
   79: *         DLAED3.
   80: *
   81: *  CUTPNT (input) INTEGER
   82: *         The location of the last eigenvalue in the leading
   83: *         sub-matrix.  min(1,N) <= CUTPNT <= N.
   84: *
   85: *  Z      (input) DOUBLE PRECISION array, dimension (N)
   86: *         On entry, Z contains the updating vector (the last row of
   87: *         the first sub-eigenvector matrix and the first row of the
   88: *         second sub-eigenvector matrix).
   89: *         On exit, the contents of Z are destroyed by the updating
   90: *         process.
   91: *
   92: *  DLAMDA (output) DOUBLE PRECISION array, dimension (N)
   93: *         A copy of the first K eigenvalues which will be used by
   94: *         DLAED3 to form the secular equation.
   95: *
   96: *  Q2     (output) DOUBLE PRECISION array, dimension (LDQ2,N)
   97: *         If ICOMPQ = 0, Q2 is not referenced.  Otherwise,
   98: *         a copy of the first K eigenvectors which will be used by
   99: *         DLAED7 in a matrix multiply (DGEMM) to update the new
  100: *         eigenvectors.
  101: *
  102: *  LDQ2   (input) INTEGER
  103: *         The leading dimension of the array Q2.  LDQ2 >= max(1,N).
  104: *
  105: *  W      (output) DOUBLE PRECISION array, dimension (N)
  106: *         The first k values of the final deflation-altered z-vector and
  107: *         will be passed to DLAED3.
  108: *
  109: *  PERM   (output) INTEGER array, dimension (N)
  110: *         The permutations (from deflation and sorting) to be applied
  111: *         to each eigenblock.
  112: *
  113: *  GIVPTR (output) INTEGER
  114: *         The number of Givens rotations which took place in this
  115: *         subproblem.
  116: *
  117: *  GIVCOL (output) INTEGER array, dimension (2, N)
  118: *         Each pair of numbers indicates a pair of columns to take place
  119: *         in a Givens rotation.
  120: *
  121: *  GIVNUM (output) DOUBLE PRECISION array, dimension (2, N)
  122: *         Each number indicates the S value to be used in the
  123: *         corresponding Givens rotation.
  124: *
  125: *  INDXP  (workspace) INTEGER array, dimension (N)
  126: *         The permutation used to place deflated values of D at the end
  127: *         of the array.  INDXP(1:K) points to the nondeflated D-values
  128: *         and INDXP(K+1:N) points to the deflated eigenvalues.
  129: *
  130: *  INDX   (workspace) INTEGER array, dimension (N)
  131: *         The permutation used to sort the contents of D into ascending
  132: *         order.
  133: *
  134: *  INFO   (output) INTEGER
  135: *          = 0:  successful exit.
  136: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  137: *
  138: *  Further Details
  139: *  ===============
  140: *
  141: *  Based on contributions by
  142: *     Jeff Rutter, Computer Science Division, University of California
  143: *     at Berkeley, USA
  144: *
  145: *  =====================================================================
  146: *
  147: *     .. Parameters ..
  148:       DOUBLE PRECISION   MONE, ZERO, ONE, TWO, EIGHT
  149:       PARAMETER          ( MONE = -1.0D0, ZERO = 0.0D0, ONE = 1.0D0,
  150:      $                   TWO = 2.0D0, EIGHT = 8.0D0 )
  151: *     ..
  152: *     .. Local Scalars ..
  153: *
  154:       INTEGER            I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2
  155:       DOUBLE PRECISION   C, EPS, S, T, TAU, TOL
  156: *     ..
  157: *     .. External Functions ..
  158:       INTEGER            IDAMAX
  159:       DOUBLE PRECISION   DLAMCH, DLAPY2
  160:       EXTERNAL           IDAMAX, DLAMCH, DLAPY2
  161: *     ..
  162: *     .. External Subroutines ..
  163:       EXTERNAL           DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA
  164: *     ..
  165: *     .. Intrinsic Functions ..
  166:       INTRINSIC          ABS, MAX, MIN, SQRT
  167: *     ..
  168: *     .. Executable Statements ..
  169: *
  170: *     Test the input parameters.
  171: *
  172:       INFO = 0
  173: *
  174:       IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
  175:          INFO = -1
  176:       ELSE IF( N.LT.0 ) THEN
  177:          INFO = -3
  178:       ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
  179:          INFO = -4
  180:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
  181:          INFO = -7
  182:       ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN
  183:          INFO = -10
  184:       ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN
  185:          INFO = -14
  186:       END IF
  187:       IF( INFO.NE.0 ) THEN
  188:          CALL XERBLA( 'DLAED8', -INFO )
  189:          RETURN
  190:       END IF
  191: *
  192: *     Need to initialize GIVPTR to O here in case of quick exit
  193: *     to prevent an unspecified code behavior (usually sigfault) 
  194: *     when IWORK array on entry to *stedc is not zeroed 
  195: *     (or at least some IWORK entries which used in *laed7 for GIVPTR).
  196: *
  197:       GIVPTR = 0
  198: *
  199: *     Quick return if possible
  200: *
  201:       IF( N.EQ.0 )
  202:      $   RETURN
  203: *
  204:       N1 = CUTPNT
  205:       N2 = N - N1
  206:       N1P1 = N1 + 1
  207: *
  208:       IF( RHO.LT.ZERO ) THEN
  209:          CALL DSCAL( N2, MONE, Z( N1P1 ), 1 )
  210:       END IF
  211: *
  212: *     Normalize z so that norm(z) = 1
  213: *
  214:       T = ONE / SQRT( TWO )
  215:       DO 10 J = 1, N
  216:          INDX( J ) = J
  217:    10 CONTINUE
  218:       CALL DSCAL( N, T, Z, 1 )
  219:       RHO = ABS( TWO*RHO )
  220: *
  221: *     Sort the eigenvalues into increasing order
  222: *
  223:       DO 20 I = CUTPNT + 1, N
  224:          INDXQ( I ) = INDXQ( I ) + CUTPNT
  225:    20 CONTINUE
  226:       DO 30 I = 1, N
  227:          DLAMDA( I ) = D( INDXQ( I ) )
  228:          W( I ) = Z( INDXQ( I ) )
  229:    30 CONTINUE
  230:       I = 1
  231:       J = CUTPNT + 1
  232:       CALL DLAMRG( N1, N2, DLAMDA, 1, 1, INDX )
  233:       DO 40 I = 1, N
  234:          D( I ) = DLAMDA( INDX( I ) )
  235:          Z( I ) = W( INDX( I ) )
  236:    40 CONTINUE
  237: *
  238: *     Calculate the allowable deflation tolerence
  239: *
  240:       IMAX = IDAMAX( N, Z, 1 )
  241:       JMAX = IDAMAX( N, D, 1 )
  242:       EPS = DLAMCH( 'Epsilon' )
  243:       TOL = EIGHT*EPS*ABS( D( JMAX ) )
  244: *
  245: *     If the rank-1 modifier is small enough, no more needs to be done
  246: *     except to reorganize Q so that its columns correspond with the
  247: *     elements in D.
  248: *
  249:       IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
  250:          K = 0
  251:          IF( ICOMPQ.EQ.0 ) THEN
  252:             DO 50 J = 1, N
  253:                PERM( J ) = INDXQ( INDX( J ) )
  254:    50       CONTINUE
  255:          ELSE
  256:             DO 60 J = 1, N
  257:                PERM( J ) = INDXQ( INDX( J ) )
  258:                CALL DCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
  259:    60       CONTINUE
  260:             CALL DLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ),
  261:      $                   LDQ )
  262:          END IF
  263:          RETURN
  264:       END IF
  265: *
  266: *     If there are multiple eigenvalues then the problem deflates.  Here
  267: *     the number of equal eigenvalues are found.  As each equal
  268: *     eigenvalue is found, an elementary reflector is computed to rotate
  269: *     the corresponding eigensubspace so that the corresponding
  270: *     components of Z are zero in this new basis.
  271: *
  272:       K = 0
  273:       K2 = N + 1
  274:       DO 70 J = 1, N
  275:          IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
  276: *
  277: *           Deflate due to small z component.
  278: *
  279:             K2 = K2 - 1
  280:             INDXP( K2 ) = J
  281:             IF( J.EQ.N )
  282:      $         GO TO 110
  283:          ELSE
  284:             JLAM = J
  285:             GO TO 80
  286:          END IF
  287:    70 CONTINUE
  288:    80 CONTINUE
  289:       J = J + 1
  290:       IF( J.GT.N )
  291:      $   GO TO 100
  292:       IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
  293: *
  294: *        Deflate due to small z component.
  295: *
  296:          K2 = K2 - 1
  297:          INDXP( K2 ) = J
  298:       ELSE
  299: *
  300: *        Check if eigenvalues are close enough to allow deflation.
  301: *
  302:          S = Z( JLAM )
  303:          C = Z( J )
  304: *
  305: *        Find sqrt(a**2+b**2) without overflow or
  306: *        destructive underflow.
  307: *
  308:          TAU = DLAPY2( C, S )
  309:          T = D( J ) - D( JLAM )
  310:          C = C / TAU
  311:          S = -S / TAU
  312:          IF( ABS( T*C*S ).LE.TOL ) THEN
  313: *
  314: *           Deflation is possible.
  315: *
  316:             Z( J ) = TAU
  317:             Z( JLAM ) = ZERO
  318: *
  319: *           Record the appropriate Givens rotation
  320: *
  321:             GIVPTR = GIVPTR + 1
  322:             GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) )
  323:             GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) )
  324:             GIVNUM( 1, GIVPTR ) = C
  325:             GIVNUM( 2, GIVPTR ) = S
  326:             IF( ICOMPQ.EQ.1 ) THEN
  327:                CALL DROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1,
  328:      $                    Q( 1, INDXQ( INDX( J ) ) ), 1, C, S )
  329:             END IF
  330:             T = D( JLAM )*C*C + D( J )*S*S
  331:             D( J ) = D( JLAM )*S*S + D( J )*C*C
  332:             D( JLAM ) = T
  333:             K2 = K2 - 1
  334:             I = 1
  335:    90       CONTINUE
  336:             IF( K2+I.LE.N ) THEN
  337:                IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN
  338:                   INDXP( K2+I-1 ) = INDXP( K2+I )
  339:                   INDXP( K2+I ) = JLAM
  340:                   I = I + 1
  341:                   GO TO 90
  342:                ELSE
  343:                   INDXP( K2+I-1 ) = JLAM
  344:                END IF
  345:             ELSE
  346:                INDXP( K2+I-1 ) = JLAM
  347:             END IF
  348:             JLAM = J
  349:          ELSE
  350:             K = K + 1
  351:             W( K ) = Z( JLAM )
  352:             DLAMDA( K ) = D( JLAM )
  353:             INDXP( K ) = JLAM
  354:             JLAM = J
  355:          END IF
  356:       END IF
  357:       GO TO 80
  358:   100 CONTINUE
  359: *
  360: *     Record the last eigenvalue.
  361: *
  362:       K = K + 1
  363:       W( K ) = Z( JLAM )
  364:       DLAMDA( K ) = D( JLAM )
  365:       INDXP( K ) = JLAM
  366: *
  367:   110 CONTINUE
  368: *
  369: *     Sort the eigenvalues and corresponding eigenvectors into DLAMDA
  370: *     and Q2 respectively.  The eigenvalues/vectors which were not
  371: *     deflated go into the first K slots of DLAMDA and Q2 respectively,
  372: *     while those which were deflated go into the last N - K slots.
  373: *
  374:       IF( ICOMPQ.EQ.0 ) THEN
  375:          DO 120 J = 1, N
  376:             JP = INDXP( J )
  377:             DLAMDA( J ) = D( JP )
  378:             PERM( J ) = INDXQ( INDX( JP ) )
  379:   120    CONTINUE
  380:       ELSE
  381:          DO 130 J = 1, N
  382:             JP = INDXP( J )
  383:             DLAMDA( J ) = D( JP )
  384:             PERM( J ) = INDXQ( INDX( JP ) )
  385:             CALL DCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
  386:   130    CONTINUE
  387:       END IF
  388: *
  389: *     The deflated eigenvalues and their corresponding vectors go back
  390: *     into the last N - K slots of D and Q respectively.
  391: *
  392:       IF( K.LT.N ) THEN
  393:          IF( ICOMPQ.EQ.0 ) THEN
  394:             CALL DCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )
  395:          ELSE
  396:             CALL DCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )
  397:             CALL DLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2,
  398:      $                   Q( 1, K+1 ), LDQ )
  399:          END IF
  400:       END IF
  401: *
  402:       RETURN
  403: *
  404: *     End of DLAED8
  405: *
  406:       END

CVSweb interface <joel.bertrand@systella.fr>