Annotation of rpl/lapack/lapack/dlaed8.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b DLAED8
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLAED8 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed8.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed8.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed8.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO,
        !            22: *                          CUTPNT, Z, DLAMDA, Q2, LDQ2, W, PERM, GIVPTR,
        !            23: *                          GIVCOL, GIVNUM, INDXP, INDX, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       INTEGER            CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N,
        !            27: *      $                   QSIZ
        !            28: *       DOUBLE PRECISION   RHO
        !            29: *       ..
        !            30: *       .. Array Arguments ..
        !            31: *       INTEGER            GIVCOL( 2, * ), INDX( * ), INDXP( * ),
        !            32: *      $                   INDXQ( * ), PERM( * )
        !            33: *       DOUBLE PRECISION   D( * ), DLAMDA( * ), GIVNUM( 2, * ),
        !            34: *      $                   Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * )
        !            35: *       ..
        !            36: *  
        !            37: *
        !            38: *> \par Purpose:
        !            39: *  =============
        !            40: *>
        !            41: *> \verbatim
        !            42: *>
        !            43: *> DLAED8 merges the two sets of eigenvalues together into a single
        !            44: *> sorted set.  Then it tries to deflate the size of the problem.
        !            45: *> There are two ways in which deflation can occur:  when two or more
        !            46: *> eigenvalues are close together or if there is a tiny element in the
        !            47: *> Z vector.  For each such occurrence the order of the related secular
        !            48: *> equation problem is reduced by one.
        !            49: *> \endverbatim
        !            50: *
        !            51: *  Arguments:
        !            52: *  ==========
        !            53: *
        !            54: *> \param[in] ICOMPQ
        !            55: *> \verbatim
        !            56: *>          ICOMPQ is INTEGER
        !            57: *>          = 0:  Compute eigenvalues only.
        !            58: *>          = 1:  Compute eigenvectors of original dense symmetric matrix
        !            59: *>                also.  On entry, Q contains the orthogonal matrix used
        !            60: *>                to reduce the original matrix to tridiagonal form.
        !            61: *> \endverbatim
        !            62: *>
        !            63: *> \param[out] K
        !            64: *> \verbatim
        !            65: *>          K is INTEGER
        !            66: *>         The number of non-deflated eigenvalues, and the order of the
        !            67: *>         related secular equation.
        !            68: *> \endverbatim
        !            69: *>
        !            70: *> \param[in] N
        !            71: *> \verbatim
        !            72: *>          N is INTEGER
        !            73: *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
        !            74: *> \endverbatim
        !            75: *>
        !            76: *> \param[in] QSIZ
        !            77: *> \verbatim
        !            78: *>          QSIZ is INTEGER
        !            79: *>         The dimension of the orthogonal matrix used to reduce
        !            80: *>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
        !            81: *> \endverbatim
        !            82: *>
        !            83: *> \param[in,out] D
        !            84: *> \verbatim
        !            85: *>          D is DOUBLE PRECISION array, dimension (N)
        !            86: *>         On entry, the eigenvalues of the two submatrices to be
        !            87: *>         combined.  On exit, the trailing (N-K) updated eigenvalues
        !            88: *>         (those which were deflated) sorted into increasing order.
        !            89: *> \endverbatim
        !            90: *>
        !            91: *> \param[in,out] Q
        !            92: *> \verbatim
        !            93: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
        !            94: *>         If ICOMPQ = 0, Q is not referenced.  Otherwise,
        !            95: *>         on entry, Q contains the eigenvectors of the partially solved
        !            96: *>         system which has been previously updated in matrix
        !            97: *>         multiplies with other partially solved eigensystems.
        !            98: *>         On exit, Q contains the trailing (N-K) updated eigenvectors
        !            99: *>         (those which were deflated) in its last N-K columns.
        !           100: *> \endverbatim
        !           101: *>
        !           102: *> \param[in] LDQ
        !           103: *> \verbatim
        !           104: *>          LDQ is INTEGER
        !           105: *>         The leading dimension of the array Q.  LDQ >= max(1,N).
        !           106: *> \endverbatim
        !           107: *>
        !           108: *> \param[in] INDXQ
        !           109: *> \verbatim
        !           110: *>          INDXQ is INTEGER array, dimension (N)
        !           111: *>         The permutation which separately sorts the two sub-problems
        !           112: *>         in D into ascending order.  Note that elements in the second
        !           113: *>         half of this permutation must first have CUTPNT added to
        !           114: *>         their values in order to be accurate.
        !           115: *> \endverbatim
        !           116: *>
        !           117: *> \param[in,out] RHO
        !           118: *> \verbatim
        !           119: *>          RHO is DOUBLE PRECISION
        !           120: *>         On entry, the off-diagonal element associated with the rank-1
        !           121: *>         cut which originally split the two submatrices which are now
        !           122: *>         being recombined.
        !           123: *>         On exit, RHO has been modified to the value required by
        !           124: *>         DLAED3.
        !           125: *> \endverbatim
        !           126: *>
        !           127: *> \param[in] CUTPNT
        !           128: *> \verbatim
        !           129: *>          CUTPNT is INTEGER
        !           130: *>         The location of the last eigenvalue in the leading
        !           131: *>         sub-matrix.  min(1,N) <= CUTPNT <= N.
        !           132: *> \endverbatim
        !           133: *>
        !           134: *> \param[in] Z
        !           135: *> \verbatim
        !           136: *>          Z is DOUBLE PRECISION array, dimension (N)
        !           137: *>         On entry, Z contains the updating vector (the last row of
        !           138: *>         the first sub-eigenvector matrix and the first row of the
        !           139: *>         second sub-eigenvector matrix).
        !           140: *>         On exit, the contents of Z are destroyed by the updating
        !           141: *>         process.
        !           142: *> \endverbatim
        !           143: *>
        !           144: *> \param[out] DLAMDA
        !           145: *> \verbatim
        !           146: *>          DLAMDA is DOUBLE PRECISION array, dimension (N)
        !           147: *>         A copy of the first K eigenvalues which will be used by
        !           148: *>         DLAED3 to form the secular equation.
        !           149: *> \endverbatim
        !           150: *>
        !           151: *> \param[out] Q2
        !           152: *> \verbatim
        !           153: *>          Q2 is DOUBLE PRECISION array, dimension (LDQ2,N)
        !           154: *>         If ICOMPQ = 0, Q2 is not referenced.  Otherwise,
        !           155: *>         a copy of the first K eigenvectors which will be used by
        !           156: *>         DLAED7 in a matrix multiply (DGEMM) to update the new
        !           157: *>         eigenvectors.
        !           158: *> \endverbatim
        !           159: *>
        !           160: *> \param[in] LDQ2
        !           161: *> \verbatim
        !           162: *>          LDQ2 is INTEGER
        !           163: *>         The leading dimension of the array Q2.  LDQ2 >= max(1,N).
        !           164: *> \endverbatim
        !           165: *>
        !           166: *> \param[out] W
        !           167: *> \verbatim
        !           168: *>          W is DOUBLE PRECISION array, dimension (N)
        !           169: *>         The first k values of the final deflation-altered z-vector and
        !           170: *>         will be passed to DLAED3.
        !           171: *> \endverbatim
        !           172: *>
        !           173: *> \param[out] PERM
        !           174: *> \verbatim
        !           175: *>          PERM is INTEGER array, dimension (N)
        !           176: *>         The permutations (from deflation and sorting) to be applied
        !           177: *>         to each eigenblock.
        !           178: *> \endverbatim
        !           179: *>
        !           180: *> \param[out] GIVPTR
        !           181: *> \verbatim
        !           182: *>          GIVPTR is INTEGER
        !           183: *>         The number of Givens rotations which took place in this
        !           184: *>         subproblem.
        !           185: *> \endverbatim
        !           186: *>
        !           187: *> \param[out] GIVCOL
        !           188: *> \verbatim
        !           189: *>          GIVCOL is INTEGER array, dimension (2, N)
        !           190: *>         Each pair of numbers indicates a pair of columns to take place
        !           191: *>         in a Givens rotation.
        !           192: *> \endverbatim
        !           193: *>
        !           194: *> \param[out] GIVNUM
        !           195: *> \verbatim
        !           196: *>          GIVNUM is DOUBLE PRECISION array, dimension (2, N)
        !           197: *>         Each number indicates the S value to be used in the
        !           198: *>         corresponding Givens rotation.
        !           199: *> \endverbatim
        !           200: *>
        !           201: *> \param[out] INDXP
        !           202: *> \verbatim
        !           203: *>          INDXP is INTEGER array, dimension (N)
        !           204: *>         The permutation used to place deflated values of D at the end
        !           205: *>         of the array.  INDXP(1:K) points to the nondeflated D-values
        !           206: *>         and INDXP(K+1:N) points to the deflated eigenvalues.
        !           207: *> \endverbatim
        !           208: *>
        !           209: *> \param[out] INDX
        !           210: *> \verbatim
        !           211: *>          INDX is INTEGER array, dimension (N)
        !           212: *>         The permutation used to sort the contents of D into ascending
        !           213: *>         order.
        !           214: *> \endverbatim
        !           215: *>
        !           216: *> \param[out] INFO
        !           217: *> \verbatim
        !           218: *>          INFO is INTEGER
        !           219: *>          = 0:  successful exit.
        !           220: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           221: *> \endverbatim
        !           222: *
        !           223: *  Authors:
        !           224: *  ========
        !           225: *
        !           226: *> \author Univ. of Tennessee 
        !           227: *> \author Univ. of California Berkeley 
        !           228: *> \author Univ. of Colorado Denver 
        !           229: *> \author NAG Ltd. 
        !           230: *
        !           231: *> \date November 2011
        !           232: *
        !           233: *> \ingroup auxOTHERcomputational
        !           234: *
        !           235: *> \par Contributors:
        !           236: *  ==================
        !           237: *>
        !           238: *> Jeff Rutter, Computer Science Division, University of California
        !           239: *> at Berkeley, USA
        !           240: *
        !           241: *  =====================================================================
1.1       bertrand  242:       SUBROUTINE DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO,
                    243:      $                   CUTPNT, Z, DLAMDA, Q2, LDQ2, W, PERM, GIVPTR,
                    244:      $                   GIVCOL, GIVNUM, INDXP, INDX, INFO )
                    245: *
1.9     ! bertrand  246: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  247: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    248: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  249: *     November 2011
1.1       bertrand  250: *
                    251: *     .. Scalar Arguments ..
                    252:       INTEGER            CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N,
                    253:      $                   QSIZ
                    254:       DOUBLE PRECISION   RHO
                    255: *     ..
                    256: *     .. Array Arguments ..
                    257:       INTEGER            GIVCOL( 2, * ), INDX( * ), INDXP( * ),
                    258:      $                   INDXQ( * ), PERM( * )
                    259:       DOUBLE PRECISION   D( * ), DLAMDA( * ), GIVNUM( 2, * ),
                    260:      $                   Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * )
                    261: *     ..
                    262: *
                    263: *  =====================================================================
                    264: *
                    265: *     .. Parameters ..
                    266:       DOUBLE PRECISION   MONE, ZERO, ONE, TWO, EIGHT
                    267:       PARAMETER          ( MONE = -1.0D0, ZERO = 0.0D0, ONE = 1.0D0,
                    268:      $                   TWO = 2.0D0, EIGHT = 8.0D0 )
                    269: *     ..
                    270: *     .. Local Scalars ..
                    271: *
                    272:       INTEGER            I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2
                    273:       DOUBLE PRECISION   C, EPS, S, T, TAU, TOL
                    274: *     ..
                    275: *     .. External Functions ..
                    276:       INTEGER            IDAMAX
                    277:       DOUBLE PRECISION   DLAMCH, DLAPY2
                    278:       EXTERNAL           IDAMAX, DLAMCH, DLAPY2
                    279: *     ..
                    280: *     .. External Subroutines ..
                    281:       EXTERNAL           DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA
                    282: *     ..
                    283: *     .. Intrinsic Functions ..
                    284:       INTRINSIC          ABS, MAX, MIN, SQRT
                    285: *     ..
                    286: *     .. Executable Statements ..
                    287: *
                    288: *     Test the input parameters.
                    289: *
                    290:       INFO = 0
                    291: *
                    292:       IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
                    293:          INFO = -1
                    294:       ELSE IF( N.LT.0 ) THEN
                    295:          INFO = -3
                    296:       ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
                    297:          INFO = -4
                    298:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
                    299:          INFO = -7
                    300:       ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN
                    301:          INFO = -10
                    302:       ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN
                    303:          INFO = -14
                    304:       END IF
                    305:       IF( INFO.NE.0 ) THEN
                    306:          CALL XERBLA( 'DLAED8', -INFO )
                    307:          RETURN
                    308:       END IF
                    309: *
1.5       bertrand  310: *     Need to initialize GIVPTR to O here in case of quick exit
                    311: *     to prevent an unspecified code behavior (usually sigfault) 
                    312: *     when IWORK array on entry to *stedc is not zeroed 
                    313: *     (or at least some IWORK entries which used in *laed7 for GIVPTR).
                    314: *
                    315:       GIVPTR = 0
                    316: *
1.1       bertrand  317: *     Quick return if possible
                    318: *
                    319:       IF( N.EQ.0 )
                    320:      $   RETURN
                    321: *
                    322:       N1 = CUTPNT
                    323:       N2 = N - N1
                    324:       N1P1 = N1 + 1
                    325: *
                    326:       IF( RHO.LT.ZERO ) THEN
                    327:          CALL DSCAL( N2, MONE, Z( N1P1 ), 1 )
                    328:       END IF
                    329: *
                    330: *     Normalize z so that norm(z) = 1
                    331: *
                    332:       T = ONE / SQRT( TWO )
                    333:       DO 10 J = 1, N
                    334:          INDX( J ) = J
                    335:    10 CONTINUE
                    336:       CALL DSCAL( N, T, Z, 1 )
                    337:       RHO = ABS( TWO*RHO )
                    338: *
                    339: *     Sort the eigenvalues into increasing order
                    340: *
                    341:       DO 20 I = CUTPNT + 1, N
                    342:          INDXQ( I ) = INDXQ( I ) + CUTPNT
                    343:    20 CONTINUE
                    344:       DO 30 I = 1, N
                    345:          DLAMDA( I ) = D( INDXQ( I ) )
                    346:          W( I ) = Z( INDXQ( I ) )
                    347:    30 CONTINUE
                    348:       I = 1
                    349:       J = CUTPNT + 1
                    350:       CALL DLAMRG( N1, N2, DLAMDA, 1, 1, INDX )
                    351:       DO 40 I = 1, N
                    352:          D( I ) = DLAMDA( INDX( I ) )
                    353:          Z( I ) = W( INDX( I ) )
                    354:    40 CONTINUE
                    355: *
                    356: *     Calculate the allowable deflation tolerence
                    357: *
                    358:       IMAX = IDAMAX( N, Z, 1 )
                    359:       JMAX = IDAMAX( N, D, 1 )
                    360:       EPS = DLAMCH( 'Epsilon' )
                    361:       TOL = EIGHT*EPS*ABS( D( JMAX ) )
                    362: *
                    363: *     If the rank-1 modifier is small enough, no more needs to be done
                    364: *     except to reorganize Q so that its columns correspond with the
                    365: *     elements in D.
                    366: *
                    367:       IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
                    368:          K = 0
                    369:          IF( ICOMPQ.EQ.0 ) THEN
                    370:             DO 50 J = 1, N
                    371:                PERM( J ) = INDXQ( INDX( J ) )
                    372:    50       CONTINUE
                    373:          ELSE
                    374:             DO 60 J = 1, N
                    375:                PERM( J ) = INDXQ( INDX( J ) )
                    376:                CALL DCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
                    377:    60       CONTINUE
                    378:             CALL DLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ),
                    379:      $                   LDQ )
                    380:          END IF
                    381:          RETURN
                    382:       END IF
                    383: *
                    384: *     If there are multiple eigenvalues then the problem deflates.  Here
                    385: *     the number of equal eigenvalues are found.  As each equal
                    386: *     eigenvalue is found, an elementary reflector is computed to rotate
                    387: *     the corresponding eigensubspace so that the corresponding
                    388: *     components of Z are zero in this new basis.
                    389: *
                    390:       K = 0
                    391:       K2 = N + 1
                    392:       DO 70 J = 1, N
                    393:          IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
                    394: *
                    395: *           Deflate due to small z component.
                    396: *
                    397:             K2 = K2 - 1
                    398:             INDXP( K2 ) = J
                    399:             IF( J.EQ.N )
                    400:      $         GO TO 110
                    401:          ELSE
                    402:             JLAM = J
                    403:             GO TO 80
                    404:          END IF
                    405:    70 CONTINUE
                    406:    80 CONTINUE
                    407:       J = J + 1
                    408:       IF( J.GT.N )
                    409:      $   GO TO 100
                    410:       IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
                    411: *
                    412: *        Deflate due to small z component.
                    413: *
                    414:          K2 = K2 - 1
                    415:          INDXP( K2 ) = J
                    416:       ELSE
                    417: *
                    418: *        Check if eigenvalues are close enough to allow deflation.
                    419: *
                    420:          S = Z( JLAM )
                    421:          C = Z( J )
                    422: *
                    423: *        Find sqrt(a**2+b**2) without overflow or
                    424: *        destructive underflow.
                    425: *
                    426:          TAU = DLAPY2( C, S )
                    427:          T = D( J ) - D( JLAM )
                    428:          C = C / TAU
                    429:          S = -S / TAU
                    430:          IF( ABS( T*C*S ).LE.TOL ) THEN
                    431: *
                    432: *           Deflation is possible.
                    433: *
                    434:             Z( J ) = TAU
                    435:             Z( JLAM ) = ZERO
                    436: *
                    437: *           Record the appropriate Givens rotation
                    438: *
                    439:             GIVPTR = GIVPTR + 1
                    440:             GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) )
                    441:             GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) )
                    442:             GIVNUM( 1, GIVPTR ) = C
                    443:             GIVNUM( 2, GIVPTR ) = S
                    444:             IF( ICOMPQ.EQ.1 ) THEN
                    445:                CALL DROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1,
                    446:      $                    Q( 1, INDXQ( INDX( J ) ) ), 1, C, S )
                    447:             END IF
                    448:             T = D( JLAM )*C*C + D( J )*S*S
                    449:             D( J ) = D( JLAM )*S*S + D( J )*C*C
                    450:             D( JLAM ) = T
                    451:             K2 = K2 - 1
                    452:             I = 1
                    453:    90       CONTINUE
                    454:             IF( K2+I.LE.N ) THEN
                    455:                IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN
                    456:                   INDXP( K2+I-1 ) = INDXP( K2+I )
                    457:                   INDXP( K2+I ) = JLAM
                    458:                   I = I + 1
                    459:                   GO TO 90
                    460:                ELSE
                    461:                   INDXP( K2+I-1 ) = JLAM
                    462:                END IF
                    463:             ELSE
                    464:                INDXP( K2+I-1 ) = JLAM
                    465:             END IF
                    466:             JLAM = J
                    467:          ELSE
                    468:             K = K + 1
                    469:             W( K ) = Z( JLAM )
                    470:             DLAMDA( K ) = D( JLAM )
                    471:             INDXP( K ) = JLAM
                    472:             JLAM = J
                    473:          END IF
                    474:       END IF
                    475:       GO TO 80
                    476:   100 CONTINUE
                    477: *
                    478: *     Record the last eigenvalue.
                    479: *
                    480:       K = K + 1
                    481:       W( K ) = Z( JLAM )
                    482:       DLAMDA( K ) = D( JLAM )
                    483:       INDXP( K ) = JLAM
                    484: *
                    485:   110 CONTINUE
                    486: *
                    487: *     Sort the eigenvalues and corresponding eigenvectors into DLAMDA
                    488: *     and Q2 respectively.  The eigenvalues/vectors which were not
                    489: *     deflated go into the first K slots of DLAMDA and Q2 respectively,
                    490: *     while those which were deflated go into the last N - K slots.
                    491: *
                    492:       IF( ICOMPQ.EQ.0 ) THEN
                    493:          DO 120 J = 1, N
                    494:             JP = INDXP( J )
                    495:             DLAMDA( J ) = D( JP )
                    496:             PERM( J ) = INDXQ( INDX( JP ) )
                    497:   120    CONTINUE
                    498:       ELSE
                    499:          DO 130 J = 1, N
                    500:             JP = INDXP( J )
                    501:             DLAMDA( J ) = D( JP )
                    502:             PERM( J ) = INDXQ( INDX( JP ) )
                    503:             CALL DCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
                    504:   130    CONTINUE
                    505:       END IF
                    506: *
                    507: *     The deflated eigenvalues and their corresponding vectors go back
                    508: *     into the last N - K slots of D and Q respectively.
                    509: *
                    510:       IF( K.LT.N ) THEN
                    511:          IF( ICOMPQ.EQ.0 ) THEN
                    512:             CALL DCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )
                    513:          ELSE
                    514:             CALL DCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )
                    515:             CALL DLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2,
                    516:      $                   Q( 1, K+1 ), LDQ )
                    517:          END IF
                    518:       END IF
                    519: *
                    520:       RETURN
                    521: *
                    522: *     End of DLAED8
                    523: *
                    524:       END

CVSweb interface <joel.bertrand@systella.fr>