Annotation of rpl/lapack/lapack/dlaed8.f, revision 1.20

1.20    ! bertrand    1: *> \brief \b DLAED8 used by DSTEDC. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DLAED8 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed8.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed8.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed8.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO,
                     22: *                          CUTPNT, Z, DLAMDA, Q2, LDQ2, W, PERM, GIVPTR,
                     23: *                          GIVCOL, GIVNUM, INDXP, INDX, INFO )
1.16      bertrand   24: *
1.9       bertrand   25: *       .. Scalar Arguments ..
                     26: *       INTEGER            CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N,
                     27: *      $                   QSIZ
                     28: *       DOUBLE PRECISION   RHO
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            GIVCOL( 2, * ), INDX( * ), INDXP( * ),
                     32: *      $                   INDXQ( * ), PERM( * )
                     33: *       DOUBLE PRECISION   D( * ), DLAMDA( * ), GIVNUM( 2, * ),
                     34: *      $                   Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * )
                     35: *       ..
1.16      bertrand   36: *
1.9       bertrand   37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> DLAED8 merges the two sets of eigenvalues together into a single
                     44: *> sorted set.  Then it tries to deflate the size of the problem.
                     45: *> There are two ways in which deflation can occur:  when two or more
                     46: *> eigenvalues are close together or if there is a tiny element in the
                     47: *> Z vector.  For each such occurrence the order of the related secular
                     48: *> equation problem is reduced by one.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] ICOMPQ
                     55: *> \verbatim
                     56: *>          ICOMPQ is INTEGER
                     57: *>          = 0:  Compute eigenvalues only.
                     58: *>          = 1:  Compute eigenvectors of original dense symmetric matrix
                     59: *>                also.  On entry, Q contains the orthogonal matrix used
                     60: *>                to reduce the original matrix to tridiagonal form.
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[out] K
                     64: *> \verbatim
                     65: *>          K is INTEGER
                     66: *>         The number of non-deflated eigenvalues, and the order of the
                     67: *>         related secular equation.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] N
                     71: *> \verbatim
                     72: *>          N is INTEGER
                     73: *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] QSIZ
                     77: *> \verbatim
                     78: *>          QSIZ is INTEGER
                     79: *>         The dimension of the orthogonal matrix used to reduce
                     80: *>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in,out] D
                     84: *> \verbatim
                     85: *>          D is DOUBLE PRECISION array, dimension (N)
                     86: *>         On entry, the eigenvalues of the two submatrices to be
                     87: *>         combined.  On exit, the trailing (N-K) updated eigenvalues
                     88: *>         (those which were deflated) sorted into increasing order.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in,out] Q
                     92: *> \verbatim
                     93: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
                     94: *>         If ICOMPQ = 0, Q is not referenced.  Otherwise,
                     95: *>         on entry, Q contains the eigenvectors of the partially solved
                     96: *>         system which has been previously updated in matrix
                     97: *>         multiplies with other partially solved eigensystems.
                     98: *>         On exit, Q contains the trailing (N-K) updated eigenvectors
                     99: *>         (those which were deflated) in its last N-K columns.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] LDQ
                    103: *> \verbatim
                    104: *>          LDQ is INTEGER
                    105: *>         The leading dimension of the array Q.  LDQ >= max(1,N).
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[in] INDXQ
                    109: *> \verbatim
                    110: *>          INDXQ is INTEGER array, dimension (N)
                    111: *>         The permutation which separately sorts the two sub-problems
                    112: *>         in D into ascending order.  Note that elements in the second
                    113: *>         half of this permutation must first have CUTPNT added to
                    114: *>         their values in order to be accurate.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in,out] RHO
                    118: *> \verbatim
                    119: *>          RHO is DOUBLE PRECISION
                    120: *>         On entry, the off-diagonal element associated with the rank-1
                    121: *>         cut which originally split the two submatrices which are now
                    122: *>         being recombined.
                    123: *>         On exit, RHO has been modified to the value required by
                    124: *>         DLAED3.
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in] CUTPNT
                    128: *> \verbatim
                    129: *>          CUTPNT is INTEGER
                    130: *>         The location of the last eigenvalue in the leading
                    131: *>         sub-matrix.  min(1,N) <= CUTPNT <= N.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in] Z
                    135: *> \verbatim
                    136: *>          Z is DOUBLE PRECISION array, dimension (N)
                    137: *>         On entry, Z contains the updating vector (the last row of
                    138: *>         the first sub-eigenvector matrix and the first row of the
                    139: *>         second sub-eigenvector matrix).
                    140: *>         On exit, the contents of Z are destroyed by the updating
                    141: *>         process.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[out] DLAMDA
                    145: *> \verbatim
                    146: *>          DLAMDA is DOUBLE PRECISION array, dimension (N)
                    147: *>         A copy of the first K eigenvalues which will be used by
                    148: *>         DLAED3 to form the secular equation.
                    149: *> \endverbatim
                    150: *>
                    151: *> \param[out] Q2
                    152: *> \verbatim
                    153: *>          Q2 is DOUBLE PRECISION array, dimension (LDQ2,N)
                    154: *>         If ICOMPQ = 0, Q2 is not referenced.  Otherwise,
                    155: *>         a copy of the first K eigenvectors which will be used by
                    156: *>         DLAED7 in a matrix multiply (DGEMM) to update the new
                    157: *>         eigenvectors.
                    158: *> \endverbatim
                    159: *>
                    160: *> \param[in] LDQ2
                    161: *> \verbatim
                    162: *>          LDQ2 is INTEGER
                    163: *>         The leading dimension of the array Q2.  LDQ2 >= max(1,N).
                    164: *> \endverbatim
                    165: *>
                    166: *> \param[out] W
                    167: *> \verbatim
                    168: *>          W is DOUBLE PRECISION array, dimension (N)
                    169: *>         The first k values of the final deflation-altered z-vector and
                    170: *>         will be passed to DLAED3.
                    171: *> \endverbatim
                    172: *>
                    173: *> \param[out] PERM
                    174: *> \verbatim
                    175: *>          PERM is INTEGER array, dimension (N)
                    176: *>         The permutations (from deflation and sorting) to be applied
                    177: *>         to each eigenblock.
                    178: *> \endverbatim
                    179: *>
                    180: *> \param[out] GIVPTR
                    181: *> \verbatim
                    182: *>          GIVPTR is INTEGER
                    183: *>         The number of Givens rotations which took place in this
                    184: *>         subproblem.
                    185: *> \endverbatim
                    186: *>
                    187: *> \param[out] GIVCOL
                    188: *> \verbatim
                    189: *>          GIVCOL is INTEGER array, dimension (2, N)
                    190: *>         Each pair of numbers indicates a pair of columns to take place
                    191: *>         in a Givens rotation.
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[out] GIVNUM
                    195: *> \verbatim
                    196: *>          GIVNUM is DOUBLE PRECISION array, dimension (2, N)
                    197: *>         Each number indicates the S value to be used in the
                    198: *>         corresponding Givens rotation.
                    199: *> \endverbatim
                    200: *>
                    201: *> \param[out] INDXP
                    202: *> \verbatim
                    203: *>          INDXP is INTEGER array, dimension (N)
                    204: *>         The permutation used to place deflated values of D at the end
                    205: *>         of the array.  INDXP(1:K) points to the nondeflated D-values
                    206: *>         and INDXP(K+1:N) points to the deflated eigenvalues.
                    207: *> \endverbatim
                    208: *>
                    209: *> \param[out] INDX
                    210: *> \verbatim
                    211: *>          INDX is INTEGER array, dimension (N)
                    212: *>         The permutation used to sort the contents of D into ascending
                    213: *>         order.
                    214: *> \endverbatim
                    215: *>
                    216: *> \param[out] INFO
                    217: *> \verbatim
                    218: *>          INFO is INTEGER
                    219: *>          = 0:  successful exit.
                    220: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    221: *> \endverbatim
                    222: *
                    223: *  Authors:
                    224: *  ========
                    225: *
1.16      bertrand  226: *> \author Univ. of Tennessee
                    227: *> \author Univ. of California Berkeley
                    228: *> \author Univ. of Colorado Denver
                    229: *> \author NAG Ltd.
1.9       bertrand  230: *
                    231: *> \ingroup auxOTHERcomputational
                    232: *
                    233: *> \par Contributors:
                    234: *  ==================
                    235: *>
                    236: *> Jeff Rutter, Computer Science Division, University of California
                    237: *> at Berkeley, USA
                    238: *
                    239: *  =====================================================================
1.1       bertrand  240:       SUBROUTINE DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO,
                    241:      $                   CUTPNT, Z, DLAMDA, Q2, LDQ2, W, PERM, GIVPTR,
                    242:      $                   GIVCOL, GIVNUM, INDXP, INDX, INFO )
                    243: *
1.20    ! bertrand  244: *  -- LAPACK computational routine --
1.1       bertrand  245: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    246: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    247: *
                    248: *     .. Scalar Arguments ..
                    249:       INTEGER            CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N,
                    250:      $                   QSIZ
                    251:       DOUBLE PRECISION   RHO
                    252: *     ..
                    253: *     .. Array Arguments ..
                    254:       INTEGER            GIVCOL( 2, * ), INDX( * ), INDXP( * ),
                    255:      $                   INDXQ( * ), PERM( * )
                    256:       DOUBLE PRECISION   D( * ), DLAMDA( * ), GIVNUM( 2, * ),
                    257:      $                   Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * )
                    258: *     ..
                    259: *
                    260: *  =====================================================================
                    261: *
                    262: *     .. Parameters ..
                    263:       DOUBLE PRECISION   MONE, ZERO, ONE, TWO, EIGHT
                    264:       PARAMETER          ( MONE = -1.0D0, ZERO = 0.0D0, ONE = 1.0D0,
                    265:      $                   TWO = 2.0D0, EIGHT = 8.0D0 )
                    266: *     ..
                    267: *     .. Local Scalars ..
                    268: *
                    269:       INTEGER            I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2
                    270:       DOUBLE PRECISION   C, EPS, S, T, TAU, TOL
                    271: *     ..
                    272: *     .. External Functions ..
                    273:       INTEGER            IDAMAX
                    274:       DOUBLE PRECISION   DLAMCH, DLAPY2
                    275:       EXTERNAL           IDAMAX, DLAMCH, DLAPY2
                    276: *     ..
                    277: *     .. External Subroutines ..
                    278:       EXTERNAL           DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA
                    279: *     ..
                    280: *     .. Intrinsic Functions ..
                    281:       INTRINSIC          ABS, MAX, MIN, SQRT
                    282: *     ..
                    283: *     .. Executable Statements ..
                    284: *
                    285: *     Test the input parameters.
                    286: *
                    287:       INFO = 0
                    288: *
                    289:       IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
                    290:          INFO = -1
                    291:       ELSE IF( N.LT.0 ) THEN
                    292:          INFO = -3
                    293:       ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
                    294:          INFO = -4
                    295:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
                    296:          INFO = -7
                    297:       ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN
                    298:          INFO = -10
                    299:       ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN
                    300:          INFO = -14
                    301:       END IF
                    302:       IF( INFO.NE.0 ) THEN
                    303:          CALL XERBLA( 'DLAED8', -INFO )
                    304:          RETURN
                    305:       END IF
                    306: *
1.5       bertrand  307: *     Need to initialize GIVPTR to O here in case of quick exit
1.16      bertrand  308: *     to prevent an unspecified code behavior (usually sigfault)
                    309: *     when IWORK array on entry to *stedc is not zeroed
1.5       bertrand  310: *     (or at least some IWORK entries which used in *laed7 for GIVPTR).
                    311: *
                    312:       GIVPTR = 0
                    313: *
1.1       bertrand  314: *     Quick return if possible
                    315: *
                    316:       IF( N.EQ.0 )
                    317:      $   RETURN
                    318: *
                    319:       N1 = CUTPNT
                    320:       N2 = N - N1
                    321:       N1P1 = N1 + 1
                    322: *
                    323:       IF( RHO.LT.ZERO ) THEN
                    324:          CALL DSCAL( N2, MONE, Z( N1P1 ), 1 )
                    325:       END IF
                    326: *
                    327: *     Normalize z so that norm(z) = 1
                    328: *
                    329:       T = ONE / SQRT( TWO )
                    330:       DO 10 J = 1, N
                    331:          INDX( J ) = J
                    332:    10 CONTINUE
                    333:       CALL DSCAL( N, T, Z, 1 )
                    334:       RHO = ABS( TWO*RHO )
                    335: *
                    336: *     Sort the eigenvalues into increasing order
                    337: *
                    338:       DO 20 I = CUTPNT + 1, N
                    339:          INDXQ( I ) = INDXQ( I ) + CUTPNT
                    340:    20 CONTINUE
                    341:       DO 30 I = 1, N
                    342:          DLAMDA( I ) = D( INDXQ( I ) )
                    343:          W( I ) = Z( INDXQ( I ) )
                    344:    30 CONTINUE
                    345:       I = 1
                    346:       J = CUTPNT + 1
                    347:       CALL DLAMRG( N1, N2, DLAMDA, 1, 1, INDX )
                    348:       DO 40 I = 1, N
                    349:          D( I ) = DLAMDA( INDX( I ) )
                    350:          Z( I ) = W( INDX( I ) )
                    351:    40 CONTINUE
                    352: *
1.19      bertrand  353: *     Calculate the allowable deflation tolerance
1.1       bertrand  354: *
                    355:       IMAX = IDAMAX( N, Z, 1 )
                    356:       JMAX = IDAMAX( N, D, 1 )
                    357:       EPS = DLAMCH( 'Epsilon' )
                    358:       TOL = EIGHT*EPS*ABS( D( JMAX ) )
                    359: *
                    360: *     If the rank-1 modifier is small enough, no more needs to be done
                    361: *     except to reorganize Q so that its columns correspond with the
                    362: *     elements in D.
                    363: *
                    364:       IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
                    365:          K = 0
                    366:          IF( ICOMPQ.EQ.0 ) THEN
                    367:             DO 50 J = 1, N
                    368:                PERM( J ) = INDXQ( INDX( J ) )
                    369:    50       CONTINUE
                    370:          ELSE
                    371:             DO 60 J = 1, N
                    372:                PERM( J ) = INDXQ( INDX( J ) )
                    373:                CALL DCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
                    374:    60       CONTINUE
                    375:             CALL DLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ),
                    376:      $                   LDQ )
                    377:          END IF
                    378:          RETURN
                    379:       END IF
                    380: *
                    381: *     If there are multiple eigenvalues then the problem deflates.  Here
                    382: *     the number of equal eigenvalues are found.  As each equal
                    383: *     eigenvalue is found, an elementary reflector is computed to rotate
                    384: *     the corresponding eigensubspace so that the corresponding
                    385: *     components of Z are zero in this new basis.
                    386: *
                    387:       K = 0
                    388:       K2 = N + 1
                    389:       DO 70 J = 1, N
                    390:          IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
                    391: *
                    392: *           Deflate due to small z component.
                    393: *
                    394:             K2 = K2 - 1
                    395:             INDXP( K2 ) = J
                    396:             IF( J.EQ.N )
                    397:      $         GO TO 110
                    398:          ELSE
                    399:             JLAM = J
                    400:             GO TO 80
                    401:          END IF
                    402:    70 CONTINUE
                    403:    80 CONTINUE
                    404:       J = J + 1
                    405:       IF( J.GT.N )
                    406:      $   GO TO 100
                    407:       IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
                    408: *
                    409: *        Deflate due to small z component.
                    410: *
                    411:          K2 = K2 - 1
                    412:          INDXP( K2 ) = J
                    413:       ELSE
                    414: *
                    415: *        Check if eigenvalues are close enough to allow deflation.
                    416: *
                    417:          S = Z( JLAM )
                    418:          C = Z( J )
                    419: *
                    420: *        Find sqrt(a**2+b**2) without overflow or
                    421: *        destructive underflow.
                    422: *
                    423:          TAU = DLAPY2( C, S )
                    424:          T = D( J ) - D( JLAM )
                    425:          C = C / TAU
                    426:          S = -S / TAU
                    427:          IF( ABS( T*C*S ).LE.TOL ) THEN
                    428: *
                    429: *           Deflation is possible.
                    430: *
                    431:             Z( J ) = TAU
                    432:             Z( JLAM ) = ZERO
                    433: *
                    434: *           Record the appropriate Givens rotation
                    435: *
                    436:             GIVPTR = GIVPTR + 1
                    437:             GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) )
                    438:             GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) )
                    439:             GIVNUM( 1, GIVPTR ) = C
                    440:             GIVNUM( 2, GIVPTR ) = S
                    441:             IF( ICOMPQ.EQ.1 ) THEN
                    442:                CALL DROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1,
                    443:      $                    Q( 1, INDXQ( INDX( J ) ) ), 1, C, S )
                    444:             END IF
                    445:             T = D( JLAM )*C*C + D( J )*S*S
                    446:             D( J ) = D( JLAM )*S*S + D( J )*C*C
                    447:             D( JLAM ) = T
                    448:             K2 = K2 - 1
                    449:             I = 1
                    450:    90       CONTINUE
                    451:             IF( K2+I.LE.N ) THEN
                    452:                IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN
                    453:                   INDXP( K2+I-1 ) = INDXP( K2+I )
                    454:                   INDXP( K2+I ) = JLAM
                    455:                   I = I + 1
                    456:                   GO TO 90
                    457:                ELSE
                    458:                   INDXP( K2+I-1 ) = JLAM
                    459:                END IF
                    460:             ELSE
                    461:                INDXP( K2+I-1 ) = JLAM
                    462:             END IF
                    463:             JLAM = J
                    464:          ELSE
                    465:             K = K + 1
                    466:             W( K ) = Z( JLAM )
                    467:             DLAMDA( K ) = D( JLAM )
                    468:             INDXP( K ) = JLAM
                    469:             JLAM = J
                    470:          END IF
                    471:       END IF
                    472:       GO TO 80
                    473:   100 CONTINUE
                    474: *
                    475: *     Record the last eigenvalue.
                    476: *
                    477:       K = K + 1
                    478:       W( K ) = Z( JLAM )
                    479:       DLAMDA( K ) = D( JLAM )
                    480:       INDXP( K ) = JLAM
                    481: *
                    482:   110 CONTINUE
                    483: *
                    484: *     Sort the eigenvalues and corresponding eigenvectors into DLAMDA
                    485: *     and Q2 respectively.  The eigenvalues/vectors which were not
                    486: *     deflated go into the first K slots of DLAMDA and Q2 respectively,
                    487: *     while those which were deflated go into the last N - K slots.
                    488: *
                    489:       IF( ICOMPQ.EQ.0 ) THEN
                    490:          DO 120 J = 1, N
                    491:             JP = INDXP( J )
                    492:             DLAMDA( J ) = D( JP )
                    493:             PERM( J ) = INDXQ( INDX( JP ) )
                    494:   120    CONTINUE
                    495:       ELSE
                    496:          DO 130 J = 1, N
                    497:             JP = INDXP( J )
                    498:             DLAMDA( J ) = D( JP )
                    499:             PERM( J ) = INDXQ( INDX( JP ) )
                    500:             CALL DCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
                    501:   130    CONTINUE
                    502:       END IF
                    503: *
                    504: *     The deflated eigenvalues and their corresponding vectors go back
                    505: *     into the last N - K slots of D and Q respectively.
                    506: *
                    507:       IF( K.LT.N ) THEN
                    508:          IF( ICOMPQ.EQ.0 ) THEN
                    509:             CALL DCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )
                    510:          ELSE
                    511:             CALL DCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )
                    512:             CALL DLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2,
                    513:      $                   Q( 1, K+1 ), LDQ )
                    514:          END IF
                    515:       END IF
                    516: *
                    517:       RETURN
                    518: *
                    519: *     End of DLAED8
                    520: *
                    521:       END

CVSweb interface <joel.bertrand@systella.fr>