File:  [local] / rpl / lapack / lapack / dlaed7.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 12:30:22 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack vers la version 3.4.2 et des scripts de compilation
pour rplcas. En particulier, le Makefile.am de giac a été modifié pour ne
compiler que le répertoire src.

    1: *> \brief \b DLAED7 used by sstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLAED7 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed7.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed7.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed7.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
   22: *                          LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,
   23: *                          PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,
   24: *                          INFO )
   25:    26: *       .. Scalar Arguments ..
   27: *       INTEGER            CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,
   28: *      $                   QSIZ, TLVLS
   29: *       DOUBLE PRECISION   RHO
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
   33: *      $                   IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
   34: *       DOUBLE PRECISION   D( * ), GIVNUM( 2, * ), Q( LDQ, * ),
   35: *      $                   QSTORE( * ), WORK( * )
   36: *       ..
   37: *  
   38: *
   39: *> \par Purpose:
   40: *  =============
   41: *>
   42: *> \verbatim
   43: *>
   44: *> DLAED7 computes the updated eigensystem of a diagonal
   45: *> matrix after modification by a rank-one symmetric matrix. This
   46: *> routine is used only for the eigenproblem which requires all
   47: *> eigenvalues and optionally eigenvectors of a dense symmetric matrix
   48: *> that has been reduced to tridiagonal form.  DLAED1 handles
   49: *> the case in which all eigenvalues and eigenvectors of a symmetric
   50: *> tridiagonal matrix are desired.
   51: *>
   52: *>   T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out)
   53: *>
   54: *>    where Z = Q**Tu, u is a vector of length N with ones in the
   55: *>    CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
   56: *>
   57: *>    The eigenvectors of the original matrix are stored in Q, and the
   58: *>    eigenvalues are in D.  The algorithm consists of three stages:
   59: *>
   60: *>       The first stage consists of deflating the size of the problem
   61: *>       when there are multiple eigenvalues or if there is a zero in
   62: *>       the Z vector.  For each such occurence the dimension of the
   63: *>       secular equation problem is reduced by one.  This stage is
   64: *>       performed by the routine DLAED8.
   65: *>
   66: *>       The second stage consists of calculating the updated
   67: *>       eigenvalues. This is done by finding the roots of the secular
   68: *>       equation via the routine DLAED4 (as called by DLAED9).
   69: *>       This routine also calculates the eigenvectors of the current
   70: *>       problem.
   71: *>
   72: *>       The final stage consists of computing the updated eigenvectors
   73: *>       directly using the updated eigenvalues.  The eigenvectors for
   74: *>       the current problem are multiplied with the eigenvectors from
   75: *>       the overall problem.
   76: *> \endverbatim
   77: *
   78: *  Arguments:
   79: *  ==========
   80: *
   81: *> \param[in] ICOMPQ
   82: *> \verbatim
   83: *>          ICOMPQ is INTEGER
   84: *>          = 0:  Compute eigenvalues only.
   85: *>          = 1:  Compute eigenvectors of original dense symmetric matrix
   86: *>                also.  On entry, Q contains the orthogonal matrix used
   87: *>                to reduce the original matrix to tridiagonal form.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] N
   91: *> \verbatim
   92: *>          N is INTEGER
   93: *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] QSIZ
   97: *> \verbatim
   98: *>          QSIZ is INTEGER
   99: *>         The dimension of the orthogonal matrix used to reduce
  100: *>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] TLVLS
  104: *> \verbatim
  105: *>          TLVLS is INTEGER
  106: *>         The total number of merging levels in the overall divide and
  107: *>         conquer tree.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] CURLVL
  111: *> \verbatim
  112: *>          CURLVL is INTEGER
  113: *>         The current level in the overall merge routine,
  114: *>         0 <= CURLVL <= TLVLS.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] CURPBM
  118: *> \verbatim
  119: *>          CURPBM is INTEGER
  120: *>         The current problem in the current level in the overall
  121: *>         merge routine (counting from upper left to lower right).
  122: *> \endverbatim
  123: *>
  124: *> \param[in,out] D
  125: *> \verbatim
  126: *>          D is DOUBLE PRECISION array, dimension (N)
  127: *>         On entry, the eigenvalues of the rank-1-perturbed matrix.
  128: *>         On exit, the eigenvalues of the repaired matrix.
  129: *> \endverbatim
  130: *>
  131: *> \param[in,out] Q
  132: *> \verbatim
  133: *>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
  134: *>         On entry, the eigenvectors of the rank-1-perturbed matrix.
  135: *>         On exit, the eigenvectors of the repaired tridiagonal matrix.
  136: *> \endverbatim
  137: *>
  138: *> \param[in] LDQ
  139: *> \verbatim
  140: *>          LDQ is INTEGER
  141: *>         The leading dimension of the array Q.  LDQ >= max(1,N).
  142: *> \endverbatim
  143: *>
  144: *> \param[out] INDXQ
  145: *> \verbatim
  146: *>          INDXQ is INTEGER array, dimension (N)
  147: *>         The permutation which will reintegrate the subproblem just
  148: *>         solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
  149: *>         will be in ascending order.
  150: *> \endverbatim
  151: *>
  152: *> \param[in] RHO
  153: *> \verbatim
  154: *>          RHO is DOUBLE PRECISION
  155: *>         The subdiagonal element used to create the rank-1
  156: *>         modification.
  157: *> \endverbatim
  158: *>
  159: *> \param[in] CUTPNT
  160: *> \verbatim
  161: *>          CUTPNT is INTEGER
  162: *>         Contains the location of the last eigenvalue in the leading
  163: *>         sub-matrix.  min(1,N) <= CUTPNT <= N.
  164: *> \endverbatim
  165: *>
  166: *> \param[in,out] QSTORE
  167: *> \verbatim
  168: *>          QSTORE is DOUBLE PRECISION array, dimension (N**2+1)
  169: *>         Stores eigenvectors of submatrices encountered during
  170: *>         divide and conquer, packed together. QPTR points to
  171: *>         beginning of the submatrices.
  172: *> \endverbatim
  173: *>
  174: *> \param[in,out] QPTR
  175: *> \verbatim
  176: *>          QPTR is INTEGER array, dimension (N+2)
  177: *>         List of indices pointing to beginning of submatrices stored
  178: *>         in QSTORE. The submatrices are numbered starting at the
  179: *>         bottom left of the divide and conquer tree, from left to
  180: *>         right and bottom to top.
  181: *> \endverbatim
  182: *>
  183: *> \param[in] PRMPTR
  184: *> \verbatim
  185: *>          PRMPTR is INTEGER array, dimension (N lg N)
  186: *>         Contains a list of pointers which indicate where in PERM a
  187: *>         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)
  188: *>         indicates the size of the permutation and also the size of
  189: *>         the full, non-deflated problem.
  190: *> \endverbatim
  191: *>
  192: *> \param[in] PERM
  193: *> \verbatim
  194: *>          PERM is INTEGER array, dimension (N lg N)
  195: *>         Contains the permutations (from deflation and sorting) to be
  196: *>         applied to each eigenblock.
  197: *> \endverbatim
  198: *>
  199: *> \param[in] GIVPTR
  200: *> \verbatim
  201: *>          GIVPTR is INTEGER array, dimension (N lg N)
  202: *>         Contains a list of pointers which indicate where in GIVCOL a
  203: *>         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)
  204: *>         indicates the number of Givens rotations.
  205: *> \endverbatim
  206: *>
  207: *> \param[in] GIVCOL
  208: *> \verbatim
  209: *>          GIVCOL is INTEGER array, dimension (2, N lg N)
  210: *>         Each pair of numbers indicates a pair of columns to take place
  211: *>         in a Givens rotation.
  212: *> \endverbatim
  213: *>
  214: *> \param[in] GIVNUM
  215: *> \verbatim
  216: *>          GIVNUM is DOUBLE PRECISION array, dimension (2, N lg N)
  217: *>         Each number indicates the S value to be used in the
  218: *>         corresponding Givens rotation.
  219: *> \endverbatim
  220: *>
  221: *> \param[out] WORK
  222: *> \verbatim
  223: *>          WORK is DOUBLE PRECISION array, dimension (3*N+2*QSIZ*N)
  224: *> \endverbatim
  225: *>
  226: *> \param[out] IWORK
  227: *> \verbatim
  228: *>          IWORK is INTEGER array, dimension (4*N)
  229: *> \endverbatim
  230: *>
  231: *> \param[out] INFO
  232: *> \verbatim
  233: *>          INFO is INTEGER
  234: *>          = 0:  successful exit.
  235: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  236: *>          > 0:  if INFO = 1, an eigenvalue did not converge
  237: *> \endverbatim
  238: *
  239: *  Authors:
  240: *  ========
  241: *
  242: *> \author Univ. of Tennessee 
  243: *> \author Univ. of California Berkeley 
  244: *> \author Univ. of Colorado Denver 
  245: *> \author NAG Ltd. 
  246: *
  247: *> \date September 2012
  248: *
  249: *> \ingroup auxOTHERcomputational
  250: *
  251: *> \par Contributors:
  252: *  ==================
  253: *>
  254: *> Jeff Rutter, Computer Science Division, University of California
  255: *> at Berkeley, USA
  256: *
  257: *  =====================================================================
  258:       SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
  259:      $                   LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,
  260:      $                   PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,
  261:      $                   INFO )
  262: *
  263: *  -- LAPACK computational routine (version 3.4.2) --
  264: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  265: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  266: *     September 2012
  267: *
  268: *     .. Scalar Arguments ..
  269:       INTEGER            CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,
  270:      $                   QSIZ, TLVLS
  271:       DOUBLE PRECISION   RHO
  272: *     ..
  273: *     .. Array Arguments ..
  274:       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
  275:      $                   IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
  276:       DOUBLE PRECISION   D( * ), GIVNUM( 2, * ), Q( LDQ, * ),
  277:      $                   QSTORE( * ), WORK( * )
  278: *     ..
  279: *
  280: *  =====================================================================
  281: *
  282: *     .. Parameters ..
  283:       DOUBLE PRECISION   ONE, ZERO
  284:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
  285: *     ..
  286: *     .. Local Scalars ..
  287:       INTEGER            COLTYP, CURR, I, IDLMDA, INDX, INDXC, INDXP,
  288:      $                   IQ2, IS, IW, IZ, K, LDQ2, N1, N2, PTR
  289: *     ..
  290: *     .. External Subroutines ..
  291:       EXTERNAL           DGEMM, DLAED8, DLAED9, DLAEDA, DLAMRG, XERBLA
  292: *     ..
  293: *     .. Intrinsic Functions ..
  294:       INTRINSIC          MAX, MIN
  295: *     ..
  296: *     .. Executable Statements ..
  297: *
  298: *     Test the input parameters.
  299: *
  300:       INFO = 0
  301: *
  302:       IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
  303:          INFO = -1
  304:       ELSE IF( N.LT.0 ) THEN
  305:          INFO = -2
  306:       ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
  307:          INFO = -4
  308:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
  309:          INFO = -9
  310:       ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN
  311:          INFO = -12
  312:       END IF
  313:       IF( INFO.NE.0 ) THEN
  314:          CALL XERBLA( 'DLAED7', -INFO )
  315:          RETURN
  316:       END IF
  317: *
  318: *     Quick return if possible
  319: *
  320:       IF( N.EQ.0 )
  321:      $   RETURN
  322: *
  323: *     The following values are for bookkeeping purposes only.  They are
  324: *     integer pointers which indicate the portion of the workspace
  325: *     used by a particular array in DLAED8 and DLAED9.
  326: *
  327:       IF( ICOMPQ.EQ.1 ) THEN
  328:          LDQ2 = QSIZ
  329:       ELSE
  330:          LDQ2 = N
  331:       END IF
  332: *
  333:       IZ = 1
  334:       IDLMDA = IZ + N
  335:       IW = IDLMDA + N
  336:       IQ2 = IW + N
  337:       IS = IQ2 + N*LDQ2
  338: *
  339:       INDX = 1
  340:       INDXC = INDX + N
  341:       COLTYP = INDXC + N
  342:       INDXP = COLTYP + N
  343: *
  344: *     Form the z-vector which consists of the last row of Q_1 and the
  345: *     first row of Q_2.
  346: *
  347:       PTR = 1 + 2**TLVLS
  348:       DO 10 I = 1, CURLVL - 1
  349:          PTR = PTR + 2**( TLVLS-I )
  350:    10 CONTINUE
  351:       CURR = PTR + CURPBM
  352:       CALL DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
  353:      $             GIVCOL, GIVNUM, QSTORE, QPTR, WORK( IZ ),
  354:      $             WORK( IZ+N ), INFO )
  355: *
  356: *     When solving the final problem, we no longer need the stored data,
  357: *     so we will overwrite the data from this level onto the previously
  358: *     used storage space.
  359: *
  360:       IF( CURLVL.EQ.TLVLS ) THEN
  361:          QPTR( CURR ) = 1
  362:          PRMPTR( CURR ) = 1
  363:          GIVPTR( CURR ) = 1
  364:       END IF
  365: *
  366: *     Sort and Deflate eigenvalues.
  367: *
  368:       CALL DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO, CUTPNT,
  369:      $             WORK( IZ ), WORK( IDLMDA ), WORK( IQ2 ), LDQ2,
  370:      $             WORK( IW ), PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ),
  371:      $             GIVCOL( 1, GIVPTR( CURR ) ),
  372:      $             GIVNUM( 1, GIVPTR( CURR ) ), IWORK( INDXP ),
  373:      $             IWORK( INDX ), INFO )
  374:       PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N
  375:       GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR )
  376: *
  377: *     Solve Secular Equation.
  378: *
  379:       IF( K.NE.0 ) THEN
  380:          CALL DLAED9( K, 1, K, N, D, WORK( IS ), K, RHO, WORK( IDLMDA ),
  381:      $                WORK( IW ), QSTORE( QPTR( CURR ) ), K, INFO )
  382:          IF( INFO.NE.0 )
  383:      $      GO TO 30
  384:          IF( ICOMPQ.EQ.1 ) THEN
  385:             CALL DGEMM( 'N', 'N', QSIZ, K, K, ONE, WORK( IQ2 ), LDQ2,
  386:      $                  QSTORE( QPTR( CURR ) ), K, ZERO, Q, LDQ )
  387:          END IF
  388:          QPTR( CURR+1 ) = QPTR( CURR ) + K**2
  389: *
  390: *     Prepare the INDXQ sorting permutation.
  391: *
  392:          N1 = K
  393:          N2 = N - K
  394:          CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
  395:       ELSE
  396:          QPTR( CURR+1 ) = QPTR( CURR )
  397:          DO 20 I = 1, N
  398:             INDXQ( I ) = I
  399:    20    CONTINUE
  400:       END IF
  401: *
  402:    30 CONTINUE
  403:       RETURN
  404: *
  405: *     End of DLAED7
  406: *
  407:       END

CVSweb interface <joel.bertrand@systella.fr>