Annotation of rpl/lapack/lapack/dlaed7.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
                      2:      $                   LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,
                      3:      $                   PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,
                      4:      $                   INFO )
                      5: *
                      6: *  -- LAPACK routine (version 3.2) --
                      7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      9: *     November 2006
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       INTEGER            CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,
                     13:      $                   QSIZ, TLVLS
                     14:       DOUBLE PRECISION   RHO
                     15: *     ..
                     16: *     .. Array Arguments ..
                     17:       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
                     18:      $                   IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
                     19:       DOUBLE PRECISION   D( * ), GIVNUM( 2, * ), Q( LDQ, * ),
                     20:      $                   QSTORE( * ), WORK( * )
                     21: *     ..
                     22: *
                     23: *  Purpose
                     24: *  =======
                     25: *
                     26: *  DLAED7 computes the updated eigensystem of a diagonal
                     27: *  matrix after modification by a rank-one symmetric matrix. This
                     28: *  routine is used only for the eigenproblem which requires all
                     29: *  eigenvalues and optionally eigenvectors of a dense symmetric matrix
                     30: *  that has been reduced to tridiagonal form.  DLAED1 handles
                     31: *  the case in which all eigenvalues and eigenvectors of a symmetric
                     32: *  tridiagonal matrix are desired.
                     33: *
                     34: *    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
                     35: *
                     36: *     where Z = Q'u, u is a vector of length N with ones in the
                     37: *     CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
                     38: *
                     39: *     The eigenvectors of the original matrix are stored in Q, and the
                     40: *     eigenvalues are in D.  The algorithm consists of three stages:
                     41: *
                     42: *        The first stage consists of deflating the size of the problem
                     43: *        when there are multiple eigenvalues or if there is a zero in
                     44: *        the Z vector.  For each such occurence the dimension of the
                     45: *        secular equation problem is reduced by one.  This stage is
                     46: *        performed by the routine DLAED8.
                     47: *
                     48: *        The second stage consists of calculating the updated
                     49: *        eigenvalues. This is done by finding the roots of the secular
                     50: *        equation via the routine DLAED4 (as called by DLAED9).
                     51: *        This routine also calculates the eigenvectors of the current
                     52: *        problem.
                     53: *
                     54: *        The final stage consists of computing the updated eigenvectors
                     55: *        directly using the updated eigenvalues.  The eigenvectors for
                     56: *        the current problem are multiplied with the eigenvectors from
                     57: *        the overall problem.
                     58: *
                     59: *  Arguments
                     60: *  =========
                     61: *
                     62: *  ICOMPQ  (input) INTEGER
                     63: *          = 0:  Compute eigenvalues only.
                     64: *          = 1:  Compute eigenvectors of original dense symmetric matrix
                     65: *                also.  On entry, Q contains the orthogonal matrix used
                     66: *                to reduce the original matrix to tridiagonal form.
                     67: *
                     68: *  N      (input) INTEGER
                     69: *         The dimension of the symmetric tridiagonal matrix.  N >= 0.
                     70: *
                     71: *  QSIZ   (input) INTEGER
                     72: *         The dimension of the orthogonal matrix used to reduce
                     73: *         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
                     74: *
                     75: *  TLVLS  (input) INTEGER
                     76: *         The total number of merging levels in the overall divide and
                     77: *         conquer tree.
                     78: *
                     79: *  CURLVL (input) INTEGER
                     80: *         The current level in the overall merge routine,
                     81: *         0 <= CURLVL <= TLVLS.
                     82: *
                     83: *  CURPBM (input) INTEGER
                     84: *         The current problem in the current level in the overall
                     85: *         merge routine (counting from upper left to lower right).
                     86: *
                     87: *  D      (input/output) DOUBLE PRECISION array, dimension (N)
                     88: *         On entry, the eigenvalues of the rank-1-perturbed matrix.
                     89: *         On exit, the eigenvalues of the repaired matrix.
                     90: *
                     91: *  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
                     92: *         On entry, the eigenvectors of the rank-1-perturbed matrix.
                     93: *         On exit, the eigenvectors of the repaired tridiagonal matrix.
                     94: *
                     95: *  LDQ    (input) INTEGER
                     96: *         The leading dimension of the array Q.  LDQ >= max(1,N).
                     97: *
                     98: *  INDXQ  (output) INTEGER array, dimension (N)
                     99: *         The permutation which will reintegrate the subproblem just
                    100: *         solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
                    101: *         will be in ascending order.
                    102: *
                    103: *  RHO    (input) DOUBLE PRECISION
                    104: *         The subdiagonal element used to create the rank-1
                    105: *         modification.
                    106: *
                    107: *  CUTPNT (input) INTEGER
                    108: *         Contains the location of the last eigenvalue in the leading
                    109: *         sub-matrix.  min(1,N) <= CUTPNT <= N.
                    110: *
                    111: *  QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1)
                    112: *         Stores eigenvectors of submatrices encountered during
                    113: *         divide and conquer, packed together. QPTR points to
                    114: *         beginning of the submatrices.
                    115: *
                    116: *  QPTR   (input/output) INTEGER array, dimension (N+2)
                    117: *         List of indices pointing to beginning of submatrices stored
                    118: *         in QSTORE. The submatrices are numbered starting at the
                    119: *         bottom left of the divide and conquer tree, from left to
                    120: *         right and bottom to top.
                    121: *
                    122: *  PRMPTR (input) INTEGER array, dimension (N lg N)
                    123: *         Contains a list of pointers which indicate where in PERM a
                    124: *         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)
                    125: *         indicates the size of the permutation and also the size of
                    126: *         the full, non-deflated problem.
                    127: *
                    128: *  PERM   (input) INTEGER array, dimension (N lg N)
                    129: *         Contains the permutations (from deflation and sorting) to be
                    130: *         applied to each eigenblock.
                    131: *
                    132: *  GIVPTR (input) INTEGER array, dimension (N lg N)
                    133: *         Contains a list of pointers which indicate where in GIVCOL a
                    134: *         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)
                    135: *         indicates the number of Givens rotations.
                    136: *
                    137: *  GIVCOL (input) INTEGER array, dimension (2, N lg N)
                    138: *         Each pair of numbers indicates a pair of columns to take place
                    139: *         in a Givens rotation.
                    140: *
                    141: *  GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)
                    142: *         Each number indicates the S value to be used in the
                    143: *         corresponding Givens rotation.
                    144: *
                    145: *  WORK   (workspace) DOUBLE PRECISION array, dimension (3*N+QSIZ*N)
                    146: *
                    147: *  IWORK  (workspace) INTEGER array, dimension (4*N)
                    148: *
                    149: *  INFO   (output) INTEGER
                    150: *          = 0:  successful exit.
                    151: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    152: *          > 0:  if INFO = 1, an eigenvalue did not converge
                    153: *
                    154: *  Further Details
                    155: *  ===============
                    156: *
                    157: *  Based on contributions by
                    158: *     Jeff Rutter, Computer Science Division, University of California
                    159: *     at Berkeley, USA
                    160: *
                    161: *  =====================================================================
                    162: *
                    163: *     .. Parameters ..
                    164:       DOUBLE PRECISION   ONE, ZERO
                    165:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
                    166: *     ..
                    167: *     .. Local Scalars ..
                    168:       INTEGER            COLTYP, CURR, I, IDLMDA, INDX, INDXC, INDXP,
                    169:      $                   IQ2, IS, IW, IZ, K, LDQ2, N1, N2, PTR
                    170: *     ..
                    171: *     .. External Subroutines ..
                    172:       EXTERNAL           DGEMM, DLAED8, DLAED9, DLAEDA, DLAMRG, XERBLA
                    173: *     ..
                    174: *     .. Intrinsic Functions ..
                    175:       INTRINSIC          MAX, MIN
                    176: *     ..
                    177: *     .. Executable Statements ..
                    178: *
                    179: *     Test the input parameters.
                    180: *
                    181:       INFO = 0
                    182: *
                    183:       IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
                    184:          INFO = -1
                    185:       ELSE IF( N.LT.0 ) THEN
                    186:          INFO = -2
                    187:       ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
                    188:          INFO = -4
                    189:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
                    190:          INFO = -9
                    191:       ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN
                    192:          INFO = -12
                    193:       END IF
                    194:       IF( INFO.NE.0 ) THEN
                    195:          CALL XERBLA( 'DLAED7', -INFO )
                    196:          RETURN
                    197:       END IF
                    198: *
                    199: *     Quick return if possible
                    200: *
                    201:       IF( N.EQ.0 )
                    202:      $   RETURN
                    203: *
                    204: *     The following values are for bookkeeping purposes only.  They are
                    205: *     integer pointers which indicate the portion of the workspace
                    206: *     used by a particular array in DLAED8 and DLAED9.
                    207: *
                    208:       IF( ICOMPQ.EQ.1 ) THEN
                    209:          LDQ2 = QSIZ
                    210:       ELSE
                    211:          LDQ2 = N
                    212:       END IF
                    213: *
                    214:       IZ = 1
                    215:       IDLMDA = IZ + N
                    216:       IW = IDLMDA + N
                    217:       IQ2 = IW + N
                    218:       IS = IQ2 + N*LDQ2
                    219: *
                    220:       INDX = 1
                    221:       INDXC = INDX + N
                    222:       COLTYP = INDXC + N
                    223:       INDXP = COLTYP + N
                    224: *
                    225: *     Form the z-vector which consists of the last row of Q_1 and the
                    226: *     first row of Q_2.
                    227: *
                    228:       PTR = 1 + 2**TLVLS
                    229:       DO 10 I = 1, CURLVL - 1
                    230:          PTR = PTR + 2**( TLVLS-I )
                    231:    10 CONTINUE
                    232:       CURR = PTR + CURPBM
                    233:       CALL DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
                    234:      $             GIVCOL, GIVNUM, QSTORE, QPTR, WORK( IZ ),
                    235:      $             WORK( IZ+N ), INFO )
                    236: *
                    237: *     When solving the final problem, we no longer need the stored data,
                    238: *     so we will overwrite the data from this level onto the previously
                    239: *     used storage space.
                    240: *
                    241:       IF( CURLVL.EQ.TLVLS ) THEN
                    242:          QPTR( CURR ) = 1
                    243:          PRMPTR( CURR ) = 1
                    244:          GIVPTR( CURR ) = 1
                    245:       END IF
                    246: *
                    247: *     Sort and Deflate eigenvalues.
                    248: *
                    249:       CALL DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO, CUTPNT,
                    250:      $             WORK( IZ ), WORK( IDLMDA ), WORK( IQ2 ), LDQ2,
                    251:      $             WORK( IW ), PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ),
                    252:      $             GIVCOL( 1, GIVPTR( CURR ) ),
                    253:      $             GIVNUM( 1, GIVPTR( CURR ) ), IWORK( INDXP ),
                    254:      $             IWORK( INDX ), INFO )
                    255:       PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N
                    256:       GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR )
                    257: *
                    258: *     Solve Secular Equation.
                    259: *
                    260:       IF( K.NE.0 ) THEN
                    261:          CALL DLAED9( K, 1, K, N, D, WORK( IS ), K, RHO, WORK( IDLMDA ),
                    262:      $                WORK( IW ), QSTORE( QPTR( CURR ) ), K, INFO )
                    263:          IF( INFO.NE.0 )
                    264:      $      GO TO 30
                    265:          IF( ICOMPQ.EQ.1 ) THEN
                    266:             CALL DGEMM( 'N', 'N', QSIZ, K, K, ONE, WORK( IQ2 ), LDQ2,
                    267:      $                  QSTORE( QPTR( CURR ) ), K, ZERO, Q, LDQ )
                    268:          END IF
                    269:          QPTR( CURR+1 ) = QPTR( CURR ) + K**2
                    270: *
                    271: *     Prepare the INDXQ sorting permutation.
                    272: *
                    273:          N1 = K
                    274:          N2 = N - K
                    275:          CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
                    276:       ELSE
                    277:          QPTR( CURR+1 ) = QPTR( CURR )
                    278:          DO 20 I = 1, N
                    279:             INDXQ( I ) = I
                    280:    20    CONTINUE
                    281:       END IF
                    282: *
                    283:    30 CONTINUE
                    284:       RETURN
                    285: *
                    286: *     End of DLAED7
                    287: *
                    288:       END

CVSweb interface <joel.bertrand@systella.fr>