Annotation of rpl/lapack/lapack/dlaed7.f, revision 1.17

1.12      bertrand    1: *> \brief \b DLAED7 used by sstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLAED7 + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed7.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed7.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed7.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
                     22: *                          LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,
                     23: *                          PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,
                     24: *                          INFO )
                     25: * 
                     26: *       .. Scalar Arguments ..
                     27: *       INTEGER            CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,
                     28: *      $                   QSIZ, TLVLS
                     29: *       DOUBLE PRECISION   RHO
                     30: *       ..
                     31: *       .. Array Arguments ..
                     32: *       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
                     33: *      $                   IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
                     34: *       DOUBLE PRECISION   D( * ), GIVNUM( 2, * ), Q( LDQ, * ),
                     35: *      $                   QSTORE( * ), WORK( * )
                     36: *       ..
                     37: *  
                     38: *
                     39: *> \par Purpose:
                     40: *  =============
                     41: *>
                     42: *> \verbatim
                     43: *>
                     44: *> DLAED7 computes the updated eigensystem of a diagonal
                     45: *> matrix after modification by a rank-one symmetric matrix. This
                     46: *> routine is used only for the eigenproblem which requires all
                     47: *> eigenvalues and optionally eigenvectors of a dense symmetric matrix
                     48: *> that has been reduced to tridiagonal form.  DLAED1 handles
                     49: *> the case in which all eigenvalues and eigenvectors of a symmetric
                     50: *> tridiagonal matrix are desired.
                     51: *>
                     52: *>   T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out)
                     53: *>
                     54: *>    where Z = Q**Tu, u is a vector of length N with ones in the
                     55: *>    CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
                     56: *>
                     57: *>    The eigenvectors of the original matrix are stored in Q, and the
                     58: *>    eigenvalues are in D.  The algorithm consists of three stages:
                     59: *>
                     60: *>       The first stage consists of deflating the size of the problem
                     61: *>       when there are multiple eigenvalues or if there is a zero in
1.16      bertrand   62: *>       the Z vector.  For each such occurrence the dimension of the
1.9       bertrand   63: *>       secular equation problem is reduced by one.  This stage is
                     64: *>       performed by the routine DLAED8.
                     65: *>
                     66: *>       The second stage consists of calculating the updated
                     67: *>       eigenvalues. This is done by finding the roots of the secular
                     68: *>       equation via the routine DLAED4 (as called by DLAED9).
                     69: *>       This routine also calculates the eigenvectors of the current
                     70: *>       problem.
                     71: *>
                     72: *>       The final stage consists of computing the updated eigenvectors
                     73: *>       directly using the updated eigenvalues.  The eigenvectors for
                     74: *>       the current problem are multiplied with the eigenvectors from
                     75: *>       the overall problem.
                     76: *> \endverbatim
                     77: *
                     78: *  Arguments:
                     79: *  ==========
                     80: *
                     81: *> \param[in] ICOMPQ
                     82: *> \verbatim
                     83: *>          ICOMPQ is INTEGER
                     84: *>          = 0:  Compute eigenvalues only.
                     85: *>          = 1:  Compute eigenvectors of original dense symmetric matrix
                     86: *>                also.  On entry, Q contains the orthogonal matrix used
                     87: *>                to reduce the original matrix to tridiagonal form.
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[in] N
                     91: *> \verbatim
                     92: *>          N is INTEGER
                     93: *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] QSIZ
                     97: *> \verbatim
                     98: *>          QSIZ is INTEGER
                     99: *>         The dimension of the orthogonal matrix used to reduce
                    100: *>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] TLVLS
                    104: *> \verbatim
                    105: *>          TLVLS is INTEGER
                    106: *>         The total number of merging levels in the overall divide and
                    107: *>         conquer tree.
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[in] CURLVL
                    111: *> \verbatim
                    112: *>          CURLVL is INTEGER
                    113: *>         The current level in the overall merge routine,
                    114: *>         0 <= CURLVL <= TLVLS.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] CURPBM
                    118: *> \verbatim
                    119: *>          CURPBM is INTEGER
                    120: *>         The current problem in the current level in the overall
                    121: *>         merge routine (counting from upper left to lower right).
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in,out] D
                    125: *> \verbatim
                    126: *>          D is DOUBLE PRECISION array, dimension (N)
                    127: *>         On entry, the eigenvalues of the rank-1-perturbed matrix.
                    128: *>         On exit, the eigenvalues of the repaired matrix.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[in,out] Q
                    132: *> \verbatim
                    133: *>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
                    134: *>         On entry, the eigenvectors of the rank-1-perturbed matrix.
                    135: *>         On exit, the eigenvectors of the repaired tridiagonal matrix.
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[in] LDQ
                    139: *> \verbatim
                    140: *>          LDQ is INTEGER
                    141: *>         The leading dimension of the array Q.  LDQ >= max(1,N).
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[out] INDXQ
                    145: *> \verbatim
                    146: *>          INDXQ is INTEGER array, dimension (N)
                    147: *>         The permutation which will reintegrate the subproblem just
                    148: *>         solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
                    149: *>         will be in ascending order.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[in] RHO
                    153: *> \verbatim
                    154: *>          RHO is DOUBLE PRECISION
                    155: *>         The subdiagonal element used to create the rank-1
                    156: *>         modification.
                    157: *> \endverbatim
                    158: *>
                    159: *> \param[in] CUTPNT
                    160: *> \verbatim
                    161: *>          CUTPNT is INTEGER
                    162: *>         Contains the location of the last eigenvalue in the leading
                    163: *>         sub-matrix.  min(1,N) <= CUTPNT <= N.
                    164: *> \endverbatim
                    165: *>
                    166: *> \param[in,out] QSTORE
                    167: *> \verbatim
                    168: *>          QSTORE is DOUBLE PRECISION array, dimension (N**2+1)
                    169: *>         Stores eigenvectors of submatrices encountered during
                    170: *>         divide and conquer, packed together. QPTR points to
                    171: *>         beginning of the submatrices.
                    172: *> \endverbatim
                    173: *>
                    174: *> \param[in,out] QPTR
                    175: *> \verbatim
                    176: *>          QPTR is INTEGER array, dimension (N+2)
                    177: *>         List of indices pointing to beginning of submatrices stored
                    178: *>         in QSTORE. The submatrices are numbered starting at the
                    179: *>         bottom left of the divide and conquer tree, from left to
                    180: *>         right and bottom to top.
                    181: *> \endverbatim
                    182: *>
                    183: *> \param[in] PRMPTR
                    184: *> \verbatim
                    185: *>          PRMPTR is INTEGER array, dimension (N lg N)
                    186: *>         Contains a list of pointers which indicate where in PERM a
                    187: *>         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)
                    188: *>         indicates the size of the permutation and also the size of
                    189: *>         the full, non-deflated problem.
                    190: *> \endverbatim
                    191: *>
                    192: *> \param[in] PERM
                    193: *> \verbatim
                    194: *>          PERM is INTEGER array, dimension (N lg N)
                    195: *>         Contains the permutations (from deflation and sorting) to be
                    196: *>         applied to each eigenblock.
                    197: *> \endverbatim
                    198: *>
                    199: *> \param[in] GIVPTR
                    200: *> \verbatim
                    201: *>          GIVPTR is INTEGER array, dimension (N lg N)
                    202: *>         Contains a list of pointers which indicate where in GIVCOL a
                    203: *>         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)
                    204: *>         indicates the number of Givens rotations.
                    205: *> \endverbatim
                    206: *>
                    207: *> \param[in] GIVCOL
                    208: *> \verbatim
                    209: *>          GIVCOL is INTEGER array, dimension (2, N lg N)
                    210: *>         Each pair of numbers indicates a pair of columns to take place
                    211: *>         in a Givens rotation.
                    212: *> \endverbatim
                    213: *>
                    214: *> \param[in] GIVNUM
                    215: *> \verbatim
                    216: *>          GIVNUM is DOUBLE PRECISION array, dimension (2, N lg N)
                    217: *>         Each number indicates the S value to be used in the
                    218: *>         corresponding Givens rotation.
                    219: *> \endverbatim
                    220: *>
                    221: *> \param[out] WORK
                    222: *> \verbatim
                    223: *>          WORK is DOUBLE PRECISION array, dimension (3*N+2*QSIZ*N)
                    224: *> \endverbatim
                    225: *>
                    226: *> \param[out] IWORK
                    227: *> \verbatim
                    228: *>          IWORK is INTEGER array, dimension (4*N)
                    229: *> \endverbatim
                    230: *>
                    231: *> \param[out] INFO
                    232: *> \verbatim
                    233: *>          INFO is INTEGER
                    234: *>          = 0:  successful exit.
                    235: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    236: *>          > 0:  if INFO = 1, an eigenvalue did not converge
                    237: *> \endverbatim
                    238: *
                    239: *  Authors:
                    240: *  ========
                    241: *
                    242: *> \author Univ. of Tennessee 
                    243: *> \author Univ. of California Berkeley 
                    244: *> \author Univ. of Colorado Denver 
                    245: *> \author NAG Ltd. 
                    246: *
1.16      bertrand  247: *> \date June 2016
1.9       bertrand  248: *
                    249: *> \ingroup auxOTHERcomputational
                    250: *
                    251: *> \par Contributors:
                    252: *  ==================
                    253: *>
                    254: *> Jeff Rutter, Computer Science Division, University of California
                    255: *> at Berkeley, USA
                    256: *
                    257: *  =====================================================================
1.1       bertrand  258:       SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
                    259:      $                   LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,
                    260:      $                   PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,
                    261:      $                   INFO )
                    262: *
1.16      bertrand  263: *  -- LAPACK computational routine (version 3.6.1) --
1.1       bertrand  264: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    265: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.16      bertrand  266: *     June 2016
1.1       bertrand  267: *
                    268: *     .. Scalar Arguments ..
                    269:       INTEGER            CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,
                    270:      $                   QSIZ, TLVLS
                    271:       DOUBLE PRECISION   RHO
                    272: *     ..
                    273: *     .. Array Arguments ..
                    274:       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
                    275:      $                   IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
                    276:       DOUBLE PRECISION   D( * ), GIVNUM( 2, * ), Q( LDQ, * ),
                    277:      $                   QSTORE( * ), WORK( * )
                    278: *     ..
                    279: *
                    280: *  =====================================================================
                    281: *
                    282: *     .. Parameters ..
                    283:       DOUBLE PRECISION   ONE, ZERO
                    284:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
                    285: *     ..
                    286: *     .. Local Scalars ..
                    287:       INTEGER            COLTYP, CURR, I, IDLMDA, INDX, INDXC, INDXP,
                    288:      $                   IQ2, IS, IW, IZ, K, LDQ2, N1, N2, PTR
                    289: *     ..
                    290: *     .. External Subroutines ..
                    291:       EXTERNAL           DGEMM, DLAED8, DLAED9, DLAEDA, DLAMRG, XERBLA
                    292: *     ..
                    293: *     .. Intrinsic Functions ..
                    294:       INTRINSIC          MAX, MIN
                    295: *     ..
                    296: *     .. Executable Statements ..
                    297: *
                    298: *     Test the input parameters.
                    299: *
                    300:       INFO = 0
                    301: *
                    302:       IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
                    303:          INFO = -1
                    304:       ELSE IF( N.LT.0 ) THEN
                    305:          INFO = -2
                    306:       ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
1.15      bertrand  307:          INFO = -3
1.1       bertrand  308:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
                    309:          INFO = -9
                    310:       ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN
                    311:          INFO = -12
                    312:       END IF
                    313:       IF( INFO.NE.0 ) THEN
                    314:          CALL XERBLA( 'DLAED7', -INFO )
                    315:          RETURN
                    316:       END IF
                    317: *
                    318: *     Quick return if possible
                    319: *
                    320:       IF( N.EQ.0 )
                    321:      $   RETURN
                    322: *
                    323: *     The following values are for bookkeeping purposes only.  They are
                    324: *     integer pointers which indicate the portion of the workspace
                    325: *     used by a particular array in DLAED8 and DLAED9.
                    326: *
                    327:       IF( ICOMPQ.EQ.1 ) THEN
                    328:          LDQ2 = QSIZ
                    329:       ELSE
                    330:          LDQ2 = N
                    331:       END IF
                    332: *
                    333:       IZ = 1
                    334:       IDLMDA = IZ + N
                    335:       IW = IDLMDA + N
                    336:       IQ2 = IW + N
                    337:       IS = IQ2 + N*LDQ2
                    338: *
                    339:       INDX = 1
                    340:       INDXC = INDX + N
                    341:       COLTYP = INDXC + N
                    342:       INDXP = COLTYP + N
                    343: *
                    344: *     Form the z-vector which consists of the last row of Q_1 and the
                    345: *     first row of Q_2.
                    346: *
                    347:       PTR = 1 + 2**TLVLS
                    348:       DO 10 I = 1, CURLVL - 1
                    349:          PTR = PTR + 2**( TLVLS-I )
                    350:    10 CONTINUE
                    351:       CURR = PTR + CURPBM
                    352:       CALL DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
                    353:      $             GIVCOL, GIVNUM, QSTORE, QPTR, WORK( IZ ),
                    354:      $             WORK( IZ+N ), INFO )
                    355: *
                    356: *     When solving the final problem, we no longer need the stored data,
                    357: *     so we will overwrite the data from this level onto the previously
                    358: *     used storage space.
                    359: *
                    360:       IF( CURLVL.EQ.TLVLS ) THEN
                    361:          QPTR( CURR ) = 1
                    362:          PRMPTR( CURR ) = 1
                    363:          GIVPTR( CURR ) = 1
                    364:       END IF
                    365: *
                    366: *     Sort and Deflate eigenvalues.
                    367: *
                    368:       CALL DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO, CUTPNT,
                    369:      $             WORK( IZ ), WORK( IDLMDA ), WORK( IQ2 ), LDQ2,
                    370:      $             WORK( IW ), PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ),
                    371:      $             GIVCOL( 1, GIVPTR( CURR ) ),
                    372:      $             GIVNUM( 1, GIVPTR( CURR ) ), IWORK( INDXP ),
                    373:      $             IWORK( INDX ), INFO )
                    374:       PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N
                    375:       GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR )
                    376: *
                    377: *     Solve Secular Equation.
                    378: *
                    379:       IF( K.NE.0 ) THEN
                    380:          CALL DLAED9( K, 1, K, N, D, WORK( IS ), K, RHO, WORK( IDLMDA ),
                    381:      $                WORK( IW ), QSTORE( QPTR( CURR ) ), K, INFO )
                    382:          IF( INFO.NE.0 )
                    383:      $      GO TO 30
                    384:          IF( ICOMPQ.EQ.1 ) THEN
                    385:             CALL DGEMM( 'N', 'N', QSIZ, K, K, ONE, WORK( IQ2 ), LDQ2,
                    386:      $                  QSTORE( QPTR( CURR ) ), K, ZERO, Q, LDQ )
                    387:          END IF
                    388:          QPTR( CURR+1 ) = QPTR( CURR ) + K**2
                    389: *
                    390: *     Prepare the INDXQ sorting permutation.
                    391: *
                    392:          N1 = K
                    393:          N2 = N - K
                    394:          CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
                    395:       ELSE
                    396:          QPTR( CURR+1 ) = QPTR( CURR )
                    397:          DO 20 I = 1, N
                    398:             INDXQ( I ) = I
                    399:    20    CONTINUE
                    400:       END IF
                    401: *
                    402:    30 CONTINUE
                    403:       RETURN
                    404: *
                    405: *     End of DLAED7
                    406: *
                    407:       END

CVSweb interface <joel.bertrand@systella.fr>