Annotation of rpl/lapack/lapack/dlaed7.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
        !             2:      $                   LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,
        !             3:      $                   PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,
        !             4:      $                   INFO )
        !             5: *
        !             6: *  -- LAPACK routine (version 3.2) --
        !             7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             9: *     November 2006
        !            10: *
        !            11: *     .. Scalar Arguments ..
        !            12:       INTEGER            CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,
        !            13:      $                   QSIZ, TLVLS
        !            14:       DOUBLE PRECISION   RHO
        !            15: *     ..
        !            16: *     .. Array Arguments ..
        !            17:       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
        !            18:      $                   IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
        !            19:       DOUBLE PRECISION   D( * ), GIVNUM( 2, * ), Q( LDQ, * ),
        !            20:      $                   QSTORE( * ), WORK( * )
        !            21: *     ..
        !            22: *
        !            23: *  Purpose
        !            24: *  =======
        !            25: *
        !            26: *  DLAED7 computes the updated eigensystem of a diagonal
        !            27: *  matrix after modification by a rank-one symmetric matrix. This
        !            28: *  routine is used only for the eigenproblem which requires all
        !            29: *  eigenvalues and optionally eigenvectors of a dense symmetric matrix
        !            30: *  that has been reduced to tridiagonal form.  DLAED1 handles
        !            31: *  the case in which all eigenvalues and eigenvectors of a symmetric
        !            32: *  tridiagonal matrix are desired.
        !            33: *
        !            34: *    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
        !            35: *
        !            36: *     where Z = Q'u, u is a vector of length N with ones in the
        !            37: *     CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
        !            38: *
        !            39: *     The eigenvectors of the original matrix are stored in Q, and the
        !            40: *     eigenvalues are in D.  The algorithm consists of three stages:
        !            41: *
        !            42: *        The first stage consists of deflating the size of the problem
        !            43: *        when there are multiple eigenvalues or if there is a zero in
        !            44: *        the Z vector.  For each such occurence the dimension of the
        !            45: *        secular equation problem is reduced by one.  This stage is
        !            46: *        performed by the routine DLAED8.
        !            47: *
        !            48: *        The second stage consists of calculating the updated
        !            49: *        eigenvalues. This is done by finding the roots of the secular
        !            50: *        equation via the routine DLAED4 (as called by DLAED9).
        !            51: *        This routine also calculates the eigenvectors of the current
        !            52: *        problem.
        !            53: *
        !            54: *        The final stage consists of computing the updated eigenvectors
        !            55: *        directly using the updated eigenvalues.  The eigenvectors for
        !            56: *        the current problem are multiplied with the eigenvectors from
        !            57: *        the overall problem.
        !            58: *
        !            59: *  Arguments
        !            60: *  =========
        !            61: *
        !            62: *  ICOMPQ  (input) INTEGER
        !            63: *          = 0:  Compute eigenvalues only.
        !            64: *          = 1:  Compute eigenvectors of original dense symmetric matrix
        !            65: *                also.  On entry, Q contains the orthogonal matrix used
        !            66: *                to reduce the original matrix to tridiagonal form.
        !            67: *
        !            68: *  N      (input) INTEGER
        !            69: *         The dimension of the symmetric tridiagonal matrix.  N >= 0.
        !            70: *
        !            71: *  QSIZ   (input) INTEGER
        !            72: *         The dimension of the orthogonal matrix used to reduce
        !            73: *         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
        !            74: *
        !            75: *  TLVLS  (input) INTEGER
        !            76: *         The total number of merging levels in the overall divide and
        !            77: *         conquer tree.
        !            78: *
        !            79: *  CURLVL (input) INTEGER
        !            80: *         The current level in the overall merge routine,
        !            81: *         0 <= CURLVL <= TLVLS.
        !            82: *
        !            83: *  CURPBM (input) INTEGER
        !            84: *         The current problem in the current level in the overall
        !            85: *         merge routine (counting from upper left to lower right).
        !            86: *
        !            87: *  D      (input/output) DOUBLE PRECISION array, dimension (N)
        !            88: *         On entry, the eigenvalues of the rank-1-perturbed matrix.
        !            89: *         On exit, the eigenvalues of the repaired matrix.
        !            90: *
        !            91: *  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
        !            92: *         On entry, the eigenvectors of the rank-1-perturbed matrix.
        !            93: *         On exit, the eigenvectors of the repaired tridiagonal matrix.
        !            94: *
        !            95: *  LDQ    (input) INTEGER
        !            96: *         The leading dimension of the array Q.  LDQ >= max(1,N).
        !            97: *
        !            98: *  INDXQ  (output) INTEGER array, dimension (N)
        !            99: *         The permutation which will reintegrate the subproblem just
        !           100: *         solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
        !           101: *         will be in ascending order.
        !           102: *
        !           103: *  RHO    (input) DOUBLE PRECISION
        !           104: *         The subdiagonal element used to create the rank-1
        !           105: *         modification.
        !           106: *
        !           107: *  CUTPNT (input) INTEGER
        !           108: *         Contains the location of the last eigenvalue in the leading
        !           109: *         sub-matrix.  min(1,N) <= CUTPNT <= N.
        !           110: *
        !           111: *  QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1)
        !           112: *         Stores eigenvectors of submatrices encountered during
        !           113: *         divide and conquer, packed together. QPTR points to
        !           114: *         beginning of the submatrices.
        !           115: *
        !           116: *  QPTR   (input/output) INTEGER array, dimension (N+2)
        !           117: *         List of indices pointing to beginning of submatrices stored
        !           118: *         in QSTORE. The submatrices are numbered starting at the
        !           119: *         bottom left of the divide and conquer tree, from left to
        !           120: *         right and bottom to top.
        !           121: *
        !           122: *  PRMPTR (input) INTEGER array, dimension (N lg N)
        !           123: *         Contains a list of pointers which indicate where in PERM a
        !           124: *         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)
        !           125: *         indicates the size of the permutation and also the size of
        !           126: *         the full, non-deflated problem.
        !           127: *
        !           128: *  PERM   (input) INTEGER array, dimension (N lg N)
        !           129: *         Contains the permutations (from deflation and sorting) to be
        !           130: *         applied to each eigenblock.
        !           131: *
        !           132: *  GIVPTR (input) INTEGER array, dimension (N lg N)
        !           133: *         Contains a list of pointers which indicate where in GIVCOL a
        !           134: *         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)
        !           135: *         indicates the number of Givens rotations.
        !           136: *
        !           137: *  GIVCOL (input) INTEGER array, dimension (2, N lg N)
        !           138: *         Each pair of numbers indicates a pair of columns to take place
        !           139: *         in a Givens rotation.
        !           140: *
        !           141: *  GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)
        !           142: *         Each number indicates the S value to be used in the
        !           143: *         corresponding Givens rotation.
        !           144: *
        !           145: *  WORK   (workspace) DOUBLE PRECISION array, dimension (3*N+QSIZ*N)
        !           146: *
        !           147: *  IWORK  (workspace) INTEGER array, dimension (4*N)
        !           148: *
        !           149: *  INFO   (output) INTEGER
        !           150: *          = 0:  successful exit.
        !           151: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           152: *          > 0:  if INFO = 1, an eigenvalue did not converge
        !           153: *
        !           154: *  Further Details
        !           155: *  ===============
        !           156: *
        !           157: *  Based on contributions by
        !           158: *     Jeff Rutter, Computer Science Division, University of California
        !           159: *     at Berkeley, USA
        !           160: *
        !           161: *  =====================================================================
        !           162: *
        !           163: *     .. Parameters ..
        !           164:       DOUBLE PRECISION   ONE, ZERO
        !           165:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
        !           166: *     ..
        !           167: *     .. Local Scalars ..
        !           168:       INTEGER            COLTYP, CURR, I, IDLMDA, INDX, INDXC, INDXP,
        !           169:      $                   IQ2, IS, IW, IZ, K, LDQ2, N1, N2, PTR
        !           170: *     ..
        !           171: *     .. External Subroutines ..
        !           172:       EXTERNAL           DGEMM, DLAED8, DLAED9, DLAEDA, DLAMRG, XERBLA
        !           173: *     ..
        !           174: *     .. Intrinsic Functions ..
        !           175:       INTRINSIC          MAX, MIN
        !           176: *     ..
        !           177: *     .. Executable Statements ..
        !           178: *
        !           179: *     Test the input parameters.
        !           180: *
        !           181:       INFO = 0
        !           182: *
        !           183:       IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
        !           184:          INFO = -1
        !           185:       ELSE IF( N.LT.0 ) THEN
        !           186:          INFO = -2
        !           187:       ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
        !           188:          INFO = -4
        !           189:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
        !           190:          INFO = -9
        !           191:       ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN
        !           192:          INFO = -12
        !           193:       END IF
        !           194:       IF( INFO.NE.0 ) THEN
        !           195:          CALL XERBLA( 'DLAED7', -INFO )
        !           196:          RETURN
        !           197:       END IF
        !           198: *
        !           199: *     Quick return if possible
        !           200: *
        !           201:       IF( N.EQ.0 )
        !           202:      $   RETURN
        !           203: *
        !           204: *     The following values are for bookkeeping purposes only.  They are
        !           205: *     integer pointers which indicate the portion of the workspace
        !           206: *     used by a particular array in DLAED8 and DLAED9.
        !           207: *
        !           208:       IF( ICOMPQ.EQ.1 ) THEN
        !           209:          LDQ2 = QSIZ
        !           210:       ELSE
        !           211:          LDQ2 = N
        !           212:       END IF
        !           213: *
        !           214:       IZ = 1
        !           215:       IDLMDA = IZ + N
        !           216:       IW = IDLMDA + N
        !           217:       IQ2 = IW + N
        !           218:       IS = IQ2 + N*LDQ2
        !           219: *
        !           220:       INDX = 1
        !           221:       INDXC = INDX + N
        !           222:       COLTYP = INDXC + N
        !           223:       INDXP = COLTYP + N
        !           224: *
        !           225: *     Form the z-vector which consists of the last row of Q_1 and the
        !           226: *     first row of Q_2.
        !           227: *
        !           228:       PTR = 1 + 2**TLVLS
        !           229:       DO 10 I = 1, CURLVL - 1
        !           230:          PTR = PTR + 2**( TLVLS-I )
        !           231:    10 CONTINUE
        !           232:       CURR = PTR + CURPBM
        !           233:       CALL DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
        !           234:      $             GIVCOL, GIVNUM, QSTORE, QPTR, WORK( IZ ),
        !           235:      $             WORK( IZ+N ), INFO )
        !           236: *
        !           237: *     When solving the final problem, we no longer need the stored data,
        !           238: *     so we will overwrite the data from this level onto the previously
        !           239: *     used storage space.
        !           240: *
        !           241:       IF( CURLVL.EQ.TLVLS ) THEN
        !           242:          QPTR( CURR ) = 1
        !           243:          PRMPTR( CURR ) = 1
        !           244:          GIVPTR( CURR ) = 1
        !           245:       END IF
        !           246: *
        !           247: *     Sort and Deflate eigenvalues.
        !           248: *
        !           249:       CALL DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO, CUTPNT,
        !           250:      $             WORK( IZ ), WORK( IDLMDA ), WORK( IQ2 ), LDQ2,
        !           251:      $             WORK( IW ), PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ),
        !           252:      $             GIVCOL( 1, GIVPTR( CURR ) ),
        !           253:      $             GIVNUM( 1, GIVPTR( CURR ) ), IWORK( INDXP ),
        !           254:      $             IWORK( INDX ), INFO )
        !           255:       PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N
        !           256:       GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR )
        !           257: *
        !           258: *     Solve Secular Equation.
        !           259: *
        !           260:       IF( K.NE.0 ) THEN
        !           261:          CALL DLAED9( K, 1, K, N, D, WORK( IS ), K, RHO, WORK( IDLMDA ),
        !           262:      $                WORK( IW ), QSTORE( QPTR( CURR ) ), K, INFO )
        !           263:          IF( INFO.NE.0 )
        !           264:      $      GO TO 30
        !           265:          IF( ICOMPQ.EQ.1 ) THEN
        !           266:             CALL DGEMM( 'N', 'N', QSIZ, K, K, ONE, WORK( IQ2 ), LDQ2,
        !           267:      $                  QSTORE( QPTR( CURR ) ), K, ZERO, Q, LDQ )
        !           268:          END IF
        !           269:          QPTR( CURR+1 ) = QPTR( CURR ) + K**2
        !           270: *
        !           271: *     Prepare the INDXQ sorting permutation.
        !           272: *
        !           273:          N1 = K
        !           274:          N2 = N - K
        !           275:          CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
        !           276:       ELSE
        !           277:          QPTR( CURR+1 ) = QPTR( CURR )
        !           278:          DO 20 I = 1, N
        !           279:             INDXQ( I ) = I
        !           280:    20    CONTINUE
        !           281:       END IF
        !           282: *
        !           283:    30 CONTINUE
        !           284:       RETURN
        !           285: *
        !           286: *     End of DLAED7
        !           287: *
        !           288:       END

CVSweb interface <joel.bertrand@systella.fr>