File:  [local] / rpl / lapack / lapack / dlaed6.f
Revision 1.21: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:53 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLAED6 used by DSTEDC. Computes one Newton step in solution of the secular equation.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLAED6 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed6.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed6.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed6.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       LOGICAL            ORGATI
   25: *       INTEGER            INFO, KNITER
   26: *       DOUBLE PRECISION   FINIT, RHO, TAU
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   D( 3 ), Z( 3 )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DLAED6 computes the positive or negative root (closest to the origin)
   39: *> of
   40: *>                  z(1)        z(2)        z(3)
   41: *> f(x) =   rho + --------- + ---------- + ---------
   42: *>                 d(1)-x      d(2)-x      d(3)-x
   43: *>
   44: *> It is assumed that
   45: *>
   46: *>       if ORGATI = .true. the root is between d(2) and d(3);
   47: *>       otherwise it is between d(1) and d(2)
   48: *>
   49: *> This routine will be called by DLAED4 when necessary. In most cases,
   50: *> the root sought is the smallest in magnitude, though it might not be
   51: *> in some extremely rare situations.
   52: *> \endverbatim
   53: *
   54: *  Arguments:
   55: *  ==========
   56: *
   57: *> \param[in] KNITER
   58: *> \verbatim
   59: *>          KNITER is INTEGER
   60: *>               Refer to DLAED4 for its significance.
   61: *> \endverbatim
   62: *>
   63: *> \param[in] ORGATI
   64: *> \verbatim
   65: *>          ORGATI is LOGICAL
   66: *>               If ORGATI is true, the needed root is between d(2) and
   67: *>               d(3); otherwise it is between d(1) and d(2).  See
   68: *>               DLAED4 for further details.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] RHO
   72: *> \verbatim
   73: *>          RHO is DOUBLE PRECISION
   74: *>               Refer to the equation f(x) above.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] D
   78: *> \verbatim
   79: *>          D is DOUBLE PRECISION array, dimension (3)
   80: *>               D satisfies d(1) < d(2) < d(3).
   81: *> \endverbatim
   82: *>
   83: *> \param[in] Z
   84: *> \verbatim
   85: *>          Z is DOUBLE PRECISION array, dimension (3)
   86: *>               Each of the elements in z must be positive.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] FINIT
   90: *> \verbatim
   91: *>          FINIT is DOUBLE PRECISION
   92: *>               The value of f at 0. It is more accurate than the one
   93: *>               evaluated inside this routine (if someone wants to do
   94: *>               so).
   95: *> \endverbatim
   96: *>
   97: *> \param[out] TAU
   98: *> \verbatim
   99: *>          TAU is DOUBLE PRECISION
  100: *>               The root of the equation f(x).
  101: *> \endverbatim
  102: *>
  103: *> \param[out] INFO
  104: *> \verbatim
  105: *>          INFO is INTEGER
  106: *>               = 0: successful exit
  107: *>               > 0: if INFO = 1, failure to converge
  108: *> \endverbatim
  109: *
  110: *  Authors:
  111: *  ========
  112: *
  113: *> \author Univ. of Tennessee
  114: *> \author Univ. of California Berkeley
  115: *> \author Univ. of Colorado Denver
  116: *> \author NAG Ltd.
  117: *
  118: *> \ingroup auxOTHERcomputational
  119: *
  120: *> \par Further Details:
  121: *  =====================
  122: *>
  123: *> \verbatim
  124: *>
  125: *>  10/02/03: This version has a few statements commented out for thread
  126: *>  safety (machine parameters are computed on each entry). SJH.
  127: *>
  128: *>  05/10/06: Modified from a new version of Ren-Cang Li, use
  129: *>     Gragg-Thornton-Warner cubic convergent scheme for better stability.
  130: *> \endverbatim
  131: *
  132: *> \par Contributors:
  133: *  ==================
  134: *>
  135: *>     Ren-Cang Li, Computer Science Division, University of California
  136: *>     at Berkeley, USA
  137: *>
  138: *  =====================================================================
  139:       SUBROUTINE DLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
  140: *
  141: *  -- LAPACK computational routine --
  142: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  143: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  144: *
  145: *     .. Scalar Arguments ..
  146:       LOGICAL            ORGATI
  147:       INTEGER            INFO, KNITER
  148:       DOUBLE PRECISION   FINIT, RHO, TAU
  149: *     ..
  150: *     .. Array Arguments ..
  151:       DOUBLE PRECISION   D( 3 ), Z( 3 )
  152: *     ..
  153: *
  154: *  =====================================================================
  155: *
  156: *     .. Parameters ..
  157:       INTEGER            MAXIT
  158:       PARAMETER          ( MAXIT = 40 )
  159:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, EIGHT
  160:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
  161:      $                   THREE = 3.0D0, FOUR = 4.0D0, EIGHT = 8.0D0 )
  162: *     ..
  163: *     .. External Functions ..
  164:       DOUBLE PRECISION   DLAMCH
  165:       EXTERNAL           DLAMCH
  166: *     ..
  167: *     .. Local Arrays ..
  168:       DOUBLE PRECISION   DSCALE( 3 ), ZSCALE( 3 )
  169: *     ..
  170: *     .. Local Scalars ..
  171:       LOGICAL            SCALE
  172:       INTEGER            I, ITER, NITER
  173:       DOUBLE PRECISION   A, B, BASE, C, DDF, DF, EPS, ERRETM, ETA, F,
  174:      $                   FC, SCLFAC, SCLINV, SMALL1, SMALL2, SMINV1,
  175:      $                   SMINV2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,
  176:      $                   LBD, UBD
  177: *     ..
  178: *     .. Intrinsic Functions ..
  179:       INTRINSIC          ABS, INT, LOG, MAX, MIN, SQRT
  180: *     ..
  181: *     .. Executable Statements ..
  182: *
  183:       INFO = 0
  184: *
  185:       IF( ORGATI ) THEN
  186:          LBD = D(2)
  187:          UBD = D(3)
  188:       ELSE
  189:          LBD = D(1)
  190:          UBD = D(2)
  191:       END IF
  192:       IF( FINIT .LT. ZERO )THEN
  193:          LBD = ZERO
  194:       ELSE
  195:          UBD = ZERO
  196:       END IF
  197: *
  198:       NITER = 1
  199:       TAU = ZERO
  200:       IF( KNITER.EQ.2 ) THEN
  201:          IF( ORGATI ) THEN
  202:             TEMP = ( D( 3 )-D( 2 ) ) / TWO
  203:             C = RHO + Z( 1 ) / ( ( D( 1 )-D( 2 ) )-TEMP )
  204:             A = C*( D( 2 )+D( 3 ) ) + Z( 2 ) + Z( 3 )
  205:             B = C*D( 2 )*D( 3 ) + Z( 2 )*D( 3 ) + Z( 3 )*D( 2 )
  206:          ELSE
  207:             TEMP = ( D( 1 )-D( 2 ) ) / TWO
  208:             C = RHO + Z( 3 ) / ( ( D( 3 )-D( 2 ) )-TEMP )
  209:             A = C*( D( 1 )+D( 2 ) ) + Z( 1 ) + Z( 2 )
  210:             B = C*D( 1 )*D( 2 ) + Z( 1 )*D( 2 ) + Z( 2 )*D( 1 )
  211:          END IF
  212:          TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
  213:          A = A / TEMP
  214:          B = B / TEMP
  215:          C = C / TEMP
  216:          IF( C.EQ.ZERO ) THEN
  217:             TAU = B / A
  218:          ELSE IF( A.LE.ZERO ) THEN
  219:             TAU = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
  220:          ELSE
  221:             TAU = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
  222:          END IF
  223:          IF( TAU .LT. LBD .OR. TAU .GT. UBD )
  224:      $      TAU = ( LBD+UBD )/TWO
  225:          IF( D(1).EQ.TAU .OR. D(2).EQ.TAU .OR. D(3).EQ.TAU ) THEN
  226:             TAU = ZERO
  227:          ELSE
  228:             TEMP = FINIT + TAU*Z(1)/( D(1)*( D( 1 )-TAU ) ) +
  229:      $                     TAU*Z(2)/( D(2)*( D( 2 )-TAU ) ) +
  230:      $                     TAU*Z(3)/( D(3)*( D( 3 )-TAU ) )
  231:             IF( TEMP .LE. ZERO )THEN
  232:                LBD = TAU
  233:             ELSE
  234:                UBD = TAU
  235:             END IF
  236:             IF( ABS( FINIT ).LE.ABS( TEMP ) )
  237:      $         TAU = ZERO
  238:          END IF
  239:       END IF
  240: *
  241: *     get machine parameters for possible scaling to avoid overflow
  242: *
  243: *     modified by Sven: parameters SMALL1, SMINV1, SMALL2,
  244: *     SMINV2, EPS are not SAVEd anymore between one call to the
  245: *     others but recomputed at each call
  246: *
  247:       EPS = DLAMCH( 'Epsilon' )
  248:       BASE = DLAMCH( 'Base' )
  249:       SMALL1 = BASE**( INT( LOG( DLAMCH( 'SafMin' ) ) / LOG( BASE ) /
  250:      $         THREE ) )
  251:       SMINV1 = ONE / SMALL1
  252:       SMALL2 = SMALL1*SMALL1
  253:       SMINV2 = SMINV1*SMINV1
  254: *
  255: *     Determine if scaling of inputs necessary to avoid overflow
  256: *     when computing 1/TEMP**3
  257: *
  258:       IF( ORGATI ) THEN
  259:          TEMP = MIN( ABS( D( 2 )-TAU ), ABS( D( 3 )-TAU ) )
  260:       ELSE
  261:          TEMP = MIN( ABS( D( 1 )-TAU ), ABS( D( 2 )-TAU ) )
  262:       END IF
  263:       SCALE = .FALSE.
  264:       IF( TEMP.LE.SMALL1 ) THEN
  265:          SCALE = .TRUE.
  266:          IF( TEMP.LE.SMALL2 ) THEN
  267: *
  268: *        Scale up by power of radix nearest 1/SAFMIN**(2/3)
  269: *
  270:             SCLFAC = SMINV2
  271:             SCLINV = SMALL2
  272:          ELSE
  273: *
  274: *        Scale up by power of radix nearest 1/SAFMIN**(1/3)
  275: *
  276:             SCLFAC = SMINV1
  277:             SCLINV = SMALL1
  278:          END IF
  279: *
  280: *        Scaling up safe because D, Z, TAU scaled elsewhere to be O(1)
  281: *
  282:          DO 10 I = 1, 3
  283:             DSCALE( I ) = D( I )*SCLFAC
  284:             ZSCALE( I ) = Z( I )*SCLFAC
  285:    10    CONTINUE
  286:          TAU = TAU*SCLFAC
  287:          LBD = LBD*SCLFAC
  288:          UBD = UBD*SCLFAC
  289:       ELSE
  290: *
  291: *        Copy D and Z to DSCALE and ZSCALE
  292: *
  293:          DO 20 I = 1, 3
  294:             DSCALE( I ) = D( I )
  295:             ZSCALE( I ) = Z( I )
  296:    20    CONTINUE
  297:       END IF
  298: *
  299:       FC = ZERO
  300:       DF = ZERO
  301:       DDF = ZERO
  302:       DO 30 I = 1, 3
  303:          TEMP = ONE / ( DSCALE( I )-TAU )
  304:          TEMP1 = ZSCALE( I )*TEMP
  305:          TEMP2 = TEMP1*TEMP
  306:          TEMP3 = TEMP2*TEMP
  307:          FC = FC + TEMP1 / DSCALE( I )
  308:          DF = DF + TEMP2
  309:          DDF = DDF + TEMP3
  310:    30 CONTINUE
  311:       F = FINIT + TAU*FC
  312: *
  313:       IF( ABS( F ).LE.ZERO )
  314:      $   GO TO 60
  315:       IF( F .LE. ZERO )THEN
  316:          LBD = TAU
  317:       ELSE
  318:          UBD = TAU
  319:       END IF
  320: *
  321: *        Iteration begins -- Use Gragg-Thornton-Warner cubic convergent
  322: *                            scheme
  323: *
  324: *     It is not hard to see that
  325: *
  326: *           1) Iterations will go up monotonically
  327: *              if FINIT < 0;
  328: *
  329: *           2) Iterations will go down monotonically
  330: *              if FINIT > 0.
  331: *
  332:       ITER = NITER + 1
  333: *
  334:       DO 50 NITER = ITER, MAXIT
  335: *
  336:          IF( ORGATI ) THEN
  337:             TEMP1 = DSCALE( 2 ) - TAU
  338:             TEMP2 = DSCALE( 3 ) - TAU
  339:          ELSE
  340:             TEMP1 = DSCALE( 1 ) - TAU
  341:             TEMP2 = DSCALE( 2 ) - TAU
  342:          END IF
  343:          A = ( TEMP1+TEMP2 )*F - TEMP1*TEMP2*DF
  344:          B = TEMP1*TEMP2*F
  345:          C = F - ( TEMP1+TEMP2 )*DF + TEMP1*TEMP2*DDF
  346:          TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
  347:          A = A / TEMP
  348:          B = B / TEMP
  349:          C = C / TEMP
  350:          IF( C.EQ.ZERO ) THEN
  351:             ETA = B / A
  352:          ELSE IF( A.LE.ZERO ) THEN
  353:             ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
  354:          ELSE
  355:             ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
  356:          END IF
  357:          IF( F*ETA.GE.ZERO ) THEN
  358:             ETA = -F / DF
  359:          END IF
  360: *
  361:          TAU = TAU + ETA
  362:          IF( TAU .LT. LBD .OR. TAU .GT. UBD )
  363:      $      TAU = ( LBD + UBD )/TWO
  364: *
  365:          FC = ZERO
  366:          ERRETM = ZERO
  367:          DF = ZERO
  368:          DDF = ZERO
  369:          DO 40 I = 1, 3
  370:             IF ( ( DSCALE( I )-TAU ).NE.ZERO ) THEN
  371:                TEMP = ONE / ( DSCALE( I )-TAU )
  372:                TEMP1 = ZSCALE( I )*TEMP
  373:                TEMP2 = TEMP1*TEMP
  374:                TEMP3 = TEMP2*TEMP
  375:                TEMP4 = TEMP1 / DSCALE( I )
  376:                FC = FC + TEMP4
  377:                ERRETM = ERRETM + ABS( TEMP4 )
  378:                DF = DF + TEMP2
  379:                DDF = DDF + TEMP3
  380:             ELSE
  381:                GO TO 60
  382:             END IF
  383:    40    CONTINUE
  384:          F = FINIT + TAU*FC
  385:          ERRETM = EIGHT*( ABS( FINIT )+ABS( TAU )*ERRETM ) +
  386:      $            ABS( TAU )*DF
  387:          IF( ( ABS( F ).LE.FOUR*EPS*ERRETM ) .OR.
  388:      $      ( (UBD-LBD).LE.FOUR*EPS*ABS(TAU) )  )
  389:      $      GO TO 60
  390:          IF( F .LE. ZERO )THEN
  391:             LBD = TAU
  392:          ELSE
  393:             UBD = TAU
  394:          END IF
  395:    50 CONTINUE
  396:       INFO = 1
  397:    60 CONTINUE
  398: *
  399: *     Undo scaling
  400: *
  401:       IF( SCALE )
  402:      $   TAU = TAU*SCLINV
  403:       RETURN
  404: *
  405: *     End of DLAED6
  406: *
  407:       END

CVSweb interface <joel.bertrand@systella.fr>