File:  [local] / rpl / lapack / lapack / dlaed6.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Thu Nov 26 11:44:17 2015 UTC (8 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, HEAD
Mise à jour de Lapack (3.6.0) et du numéro de version du RPL/2.

    1: *> \brief \b DLAED6 used by sstedc. Computes one Newton step in solution of the secular equation.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLAED6 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed6.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed6.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed6.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       LOGICAL            ORGATI
   25: *       INTEGER            INFO, KNITER
   26: *       DOUBLE PRECISION   FINIT, RHO, TAU
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   D( 3 ), Z( 3 )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DLAED6 computes the positive or negative root (closest to the origin)
   39: *> of
   40: *>                  z(1)        z(2)        z(3)
   41: *> f(x) =   rho + --------- + ---------- + ---------
   42: *>                 d(1)-x      d(2)-x      d(3)-x
   43: *>
   44: *> It is assumed that
   45: *>
   46: *>       if ORGATI = .true. the root is between d(2) and d(3);
   47: *>       otherwise it is between d(1) and d(2)
   48: *>
   49: *> This routine will be called by DLAED4 when necessary. In most cases,
   50: *> the root sought is the smallest in magnitude, though it might not be
   51: *> in some extremely rare situations.
   52: *> \endverbatim
   53: *
   54: *  Arguments:
   55: *  ==========
   56: *
   57: *> \param[in] KNITER
   58: *> \verbatim
   59: *>          KNITER is INTEGER
   60: *>               Refer to DLAED4 for its significance.
   61: *> \endverbatim
   62: *>
   63: *> \param[in] ORGATI
   64: *> \verbatim
   65: *>          ORGATI is LOGICAL
   66: *>               If ORGATI is true, the needed root is between d(2) and
   67: *>               d(3); otherwise it is between d(1) and d(2).  See
   68: *>               DLAED4 for further details.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] RHO
   72: *> \verbatim
   73: *>          RHO is DOUBLE PRECISION
   74: *>               Refer to the equation f(x) above.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] D
   78: *> \verbatim
   79: *>          D is DOUBLE PRECISION array, dimension (3)
   80: *>               D satisfies d(1) < d(2) < d(3).
   81: *> \endverbatim
   82: *>
   83: *> \param[in] Z
   84: *> \verbatim
   85: *>          Z is DOUBLE PRECISION array, dimension (3)
   86: *>               Each of the elements in z must be positive.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] FINIT
   90: *> \verbatim
   91: *>          FINIT is DOUBLE PRECISION
   92: *>               The value of f at 0. It is more accurate than the one
   93: *>               evaluated inside this routine (if someone wants to do
   94: *>               so).
   95: *> \endverbatim
   96: *>
   97: *> \param[out] TAU
   98: *> \verbatim
   99: *>          TAU is DOUBLE PRECISION
  100: *>               The root of the equation f(x).
  101: *> \endverbatim
  102: *>
  103: *> \param[out] INFO
  104: *> \verbatim
  105: *>          INFO is INTEGER
  106: *>               = 0: successful exit
  107: *>               > 0: if INFO = 1, failure to converge
  108: *> \endverbatim
  109: *
  110: *  Authors:
  111: *  ========
  112: *
  113: *> \author Univ. of Tennessee 
  114: *> \author Univ. of California Berkeley 
  115: *> \author Univ. of Colorado Denver 
  116: *> \author NAG Ltd. 
  117: *
  118: *> \date November 2015
  119: *
  120: *> \ingroup auxOTHERcomputational
  121: *
  122: *> \par Further Details:
  123: *  =====================
  124: *>
  125: *> \verbatim
  126: *>
  127: *>  10/02/03: This version has a few statements commented out for thread
  128: *>  safety (machine parameters are computed on each entry). SJH.
  129: *>
  130: *>  05/10/06: Modified from a new version of Ren-Cang Li, use
  131: *>     Gragg-Thornton-Warner cubic convergent scheme for better stability.
  132: *> \endverbatim
  133: *
  134: *> \par Contributors:
  135: *  ==================
  136: *>
  137: *>     Ren-Cang Li, Computer Science Division, University of California
  138: *>     at Berkeley, USA
  139: *>
  140: *  =====================================================================
  141:       SUBROUTINE DLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
  142: *
  143: *  -- LAPACK computational routine (version 3.6.0) --
  144: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  145: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146: *     November 2015
  147: *
  148: *     .. Scalar Arguments ..
  149:       LOGICAL            ORGATI
  150:       INTEGER            INFO, KNITER
  151:       DOUBLE PRECISION   FINIT, RHO, TAU
  152: *     ..
  153: *     .. Array Arguments ..
  154:       DOUBLE PRECISION   D( 3 ), Z( 3 )
  155: *     ..
  156: *
  157: *  =====================================================================
  158: *
  159: *     .. Parameters ..
  160:       INTEGER            MAXIT
  161:       PARAMETER          ( MAXIT = 40 )
  162:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, EIGHT
  163:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
  164:      $                   THREE = 3.0D0, FOUR = 4.0D0, EIGHT = 8.0D0 )
  165: *     ..
  166: *     .. External Functions ..
  167:       DOUBLE PRECISION   DLAMCH
  168:       EXTERNAL           DLAMCH
  169: *     ..
  170: *     .. Local Arrays ..
  171:       DOUBLE PRECISION   DSCALE( 3 ), ZSCALE( 3 )
  172: *     ..
  173: *     .. Local Scalars ..
  174:       LOGICAL            SCALE
  175:       INTEGER            I, ITER, NITER
  176:       DOUBLE PRECISION   A, B, BASE, C, DDF, DF, EPS, ERRETM, ETA, F,
  177:      $                   FC, SCLFAC, SCLINV, SMALL1, SMALL2, SMINV1,
  178:      $                   SMINV2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4, 
  179:      $                   LBD, UBD
  180: *     ..
  181: *     .. Intrinsic Functions ..
  182:       INTRINSIC          ABS, INT, LOG, MAX, MIN, SQRT
  183: *     ..
  184: *     .. Executable Statements ..
  185: *
  186:       INFO = 0
  187: *
  188:       IF( ORGATI ) THEN
  189:          LBD = D(2)
  190:          UBD = D(3)
  191:       ELSE
  192:          LBD = D(1)
  193:          UBD = D(2)
  194:       END IF
  195:       IF( FINIT .LT. ZERO )THEN
  196:          LBD = ZERO
  197:       ELSE
  198:          UBD = ZERO 
  199:       END IF
  200: *
  201:       NITER = 1
  202:       TAU = ZERO
  203:       IF( KNITER.EQ.2 ) THEN
  204:          IF( ORGATI ) THEN
  205:             TEMP = ( D( 3 )-D( 2 ) ) / TWO
  206:             C = RHO + Z( 1 ) / ( ( D( 1 )-D( 2 ) )-TEMP )
  207:             A = C*( D( 2 )+D( 3 ) ) + Z( 2 ) + Z( 3 )
  208:             B = C*D( 2 )*D( 3 ) + Z( 2 )*D( 3 ) + Z( 3 )*D( 2 )
  209:          ELSE
  210:             TEMP = ( D( 1 )-D( 2 ) ) / TWO
  211:             C = RHO + Z( 3 ) / ( ( D( 3 )-D( 2 ) )-TEMP )
  212:             A = C*( D( 1 )+D( 2 ) ) + Z( 1 ) + Z( 2 )
  213:             B = C*D( 1 )*D( 2 ) + Z( 1 )*D( 2 ) + Z( 2 )*D( 1 )
  214:          END IF
  215:          TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
  216:          A = A / TEMP
  217:          B = B / TEMP
  218:          C = C / TEMP
  219:          IF( C.EQ.ZERO ) THEN
  220:             TAU = B / A
  221:          ELSE IF( A.LE.ZERO ) THEN
  222:             TAU = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
  223:          ELSE
  224:             TAU = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
  225:          END IF
  226:          IF( TAU .LT. LBD .OR. TAU .GT. UBD )
  227:      $      TAU = ( LBD+UBD )/TWO
  228:          IF( D(1).EQ.TAU .OR. D(2).EQ.TAU .OR. D(3).EQ.TAU ) THEN
  229:             TAU = ZERO
  230:          ELSE
  231:             TEMP = FINIT + TAU*Z(1)/( D(1)*( D( 1 )-TAU ) ) +
  232:      $                     TAU*Z(2)/( D(2)*( D( 2 )-TAU ) ) +
  233:      $                     TAU*Z(3)/( D(3)*( D( 3 )-TAU ) )
  234:             IF( TEMP .LE. ZERO )THEN
  235:                LBD = TAU
  236:             ELSE
  237:                UBD = TAU
  238:             END IF
  239:             IF( ABS( FINIT ).LE.ABS( TEMP ) )
  240:      $         TAU = ZERO
  241:          END IF
  242:       END IF
  243: *
  244: *     get machine parameters for possible scaling to avoid overflow
  245: *
  246: *     modified by Sven: parameters SMALL1, SMINV1, SMALL2,
  247: *     SMINV2, EPS are not SAVEd anymore between one call to the
  248: *     others but recomputed at each call
  249: *
  250:       EPS = DLAMCH( 'Epsilon' )
  251:       BASE = DLAMCH( 'Base' )
  252:       SMALL1 = BASE**( INT( LOG( DLAMCH( 'SafMin' ) ) / LOG( BASE ) /
  253:      $         THREE ) )
  254:       SMINV1 = ONE / SMALL1
  255:       SMALL2 = SMALL1*SMALL1
  256:       SMINV2 = SMINV1*SMINV1
  257: *
  258: *     Determine if scaling of inputs necessary to avoid overflow
  259: *     when computing 1/TEMP**3
  260: *
  261:       IF( ORGATI ) THEN
  262:          TEMP = MIN( ABS( D( 2 )-TAU ), ABS( D( 3 )-TAU ) )
  263:       ELSE
  264:          TEMP = MIN( ABS( D( 1 )-TAU ), ABS( D( 2 )-TAU ) )
  265:       END IF
  266:       SCALE = .FALSE.
  267:       IF( TEMP.LE.SMALL1 ) THEN
  268:          SCALE = .TRUE.
  269:          IF( TEMP.LE.SMALL2 ) THEN
  270: *
  271: *        Scale up by power of radix nearest 1/SAFMIN**(2/3)
  272: *
  273:             SCLFAC = SMINV2
  274:             SCLINV = SMALL2
  275:          ELSE
  276: *
  277: *        Scale up by power of radix nearest 1/SAFMIN**(1/3)
  278: *
  279:             SCLFAC = SMINV1
  280:             SCLINV = SMALL1
  281:          END IF
  282: *
  283: *        Scaling up safe because D, Z, TAU scaled elsewhere to be O(1)
  284: *
  285:          DO 10 I = 1, 3
  286:             DSCALE( I ) = D( I )*SCLFAC
  287:             ZSCALE( I ) = Z( I )*SCLFAC
  288:    10    CONTINUE
  289:          TAU = TAU*SCLFAC
  290:          LBD = LBD*SCLFAC
  291:          UBD = UBD*SCLFAC
  292:       ELSE
  293: *
  294: *        Copy D and Z to DSCALE and ZSCALE
  295: *
  296:          DO 20 I = 1, 3
  297:             DSCALE( I ) = D( I )
  298:             ZSCALE( I ) = Z( I )
  299:    20    CONTINUE
  300:       END IF
  301: *
  302:       FC = ZERO
  303:       DF = ZERO
  304:       DDF = ZERO
  305:       DO 30 I = 1, 3
  306:          TEMP = ONE / ( DSCALE( I )-TAU )
  307:          TEMP1 = ZSCALE( I )*TEMP
  308:          TEMP2 = TEMP1*TEMP
  309:          TEMP3 = TEMP2*TEMP
  310:          FC = FC + TEMP1 / DSCALE( I )
  311:          DF = DF + TEMP2
  312:          DDF = DDF + TEMP3
  313:    30 CONTINUE
  314:       F = FINIT + TAU*FC
  315: *
  316:       IF( ABS( F ).LE.ZERO )
  317:      $   GO TO 60
  318:       IF( F .LE. ZERO )THEN
  319:          LBD = TAU
  320:       ELSE
  321:          UBD = TAU
  322:       END IF
  323: *
  324: *        Iteration begins -- Use Gragg-Thornton-Warner cubic convergent
  325: *                            scheme
  326: *
  327: *     It is not hard to see that
  328: *
  329: *           1) Iterations will go up monotonically
  330: *              if FINIT < 0;
  331: *
  332: *           2) Iterations will go down monotonically
  333: *              if FINIT > 0.
  334: *
  335:       ITER = NITER + 1
  336: *
  337:       DO 50 NITER = ITER, MAXIT
  338: *
  339:          IF( ORGATI ) THEN
  340:             TEMP1 = DSCALE( 2 ) - TAU
  341:             TEMP2 = DSCALE( 3 ) - TAU
  342:          ELSE
  343:             TEMP1 = DSCALE( 1 ) - TAU
  344:             TEMP2 = DSCALE( 2 ) - TAU
  345:          END IF
  346:          A = ( TEMP1+TEMP2 )*F - TEMP1*TEMP2*DF
  347:          B = TEMP1*TEMP2*F
  348:          C = F - ( TEMP1+TEMP2 )*DF + TEMP1*TEMP2*DDF
  349:          TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
  350:          A = A / TEMP
  351:          B = B / TEMP
  352:          C = C / TEMP
  353:          IF( C.EQ.ZERO ) THEN
  354:             ETA = B / A
  355:          ELSE IF( A.LE.ZERO ) THEN
  356:             ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
  357:          ELSE
  358:             ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
  359:          END IF
  360:          IF( F*ETA.GE.ZERO ) THEN
  361:             ETA = -F / DF
  362:          END IF
  363: *
  364:          TAU = TAU + ETA
  365:          IF( TAU .LT. LBD .OR. TAU .GT. UBD )
  366:      $      TAU = ( LBD + UBD )/TWO 
  367: *
  368:          FC = ZERO
  369:          ERRETM = ZERO
  370:          DF = ZERO
  371:          DDF = ZERO
  372:          DO 40 I = 1, 3
  373:             IF ( ( DSCALE( I )-TAU ).NE.ZERO ) THEN
  374:                TEMP = ONE / ( DSCALE( I )-TAU )
  375:                TEMP1 = ZSCALE( I )*TEMP
  376:                TEMP2 = TEMP1*TEMP
  377:                TEMP3 = TEMP2*TEMP
  378:                TEMP4 = TEMP1 / DSCALE( I )
  379:                FC = FC + TEMP4
  380:                ERRETM = ERRETM + ABS( TEMP4 )
  381:                DF = DF + TEMP2
  382:                DDF = DDF + TEMP3
  383:             ELSE
  384:                GO TO 60
  385:             END IF
  386:    40    CONTINUE
  387:          F = FINIT + TAU*FC
  388:          ERRETM = EIGHT*( ABS( FINIT )+ABS( TAU )*ERRETM ) +
  389:      $            ABS( TAU )*DF
  390:          IF( ( ABS( F ).LE.FOUR*EPS*ERRETM ) .OR.
  391:      $      ( (UBD-LBD).LE.FOUR*EPS*ABS(TAU) )  )
  392:      $      GO TO 60
  393:          IF( F .LE. ZERO )THEN
  394:             LBD = TAU
  395:          ELSE
  396:             UBD = TAU
  397:          END IF
  398:    50 CONTINUE
  399:       INFO = 1
  400:    60 CONTINUE
  401: *
  402: *     Undo scaling
  403: *
  404:       IF( SCALE )
  405:      $   TAU = TAU*SCLINV
  406:       RETURN
  407: *
  408: *     End of DLAED6
  409: *
  410:       END

CVSweb interface <joel.bertrand@systella.fr>