File:  [local] / rpl / lapack / lapack / dlaed3.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:53 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLAED3 used by DSTEDC. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is tridiagonal.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLAED3 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed3.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed3.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed3.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX,
   22: *                          CTOT, W, S, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, K, LDQ, N, N1
   26: *       DOUBLE PRECISION   RHO
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            CTOT( * ), INDX( * )
   30: *       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
   31: *      $                   S( * ), W( * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> DLAED3 finds the roots of the secular equation, as defined by the
   41: *> values in D, W, and RHO, between 1 and K.  It makes the
   42: *> appropriate calls to DLAED4 and then updates the eigenvectors by
   43: *> multiplying the matrix of eigenvectors of the pair of eigensystems
   44: *> being combined by the matrix of eigenvectors of the K-by-K system
   45: *> which is solved here.
   46: *>
   47: *> This code makes very mild assumptions about floating point
   48: *> arithmetic. It will work on machines with a guard digit in
   49: *> add/subtract, or on those binary machines without guard digits
   50: *> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
   51: *> It could conceivably fail on hexadecimal or decimal machines
   52: *> without guard digits, but we know of none.
   53: *> \endverbatim
   54: *
   55: *  Arguments:
   56: *  ==========
   57: *
   58: *> \param[in] K
   59: *> \verbatim
   60: *>          K is INTEGER
   61: *>          The number of terms in the rational function to be solved by
   62: *>          DLAED4.  K >= 0.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>          The number of rows and columns in the Q matrix.
   69: *>          N >= K (deflation may result in N>K).
   70: *> \endverbatim
   71: *>
   72: *> \param[in] N1
   73: *> \verbatim
   74: *>          N1 is INTEGER
   75: *>          The location of the last eigenvalue in the leading submatrix.
   76: *>          min(1,N) <= N1 <= N/2.
   77: *> \endverbatim
   78: *>
   79: *> \param[out] D
   80: *> \verbatim
   81: *>          D is DOUBLE PRECISION array, dimension (N)
   82: *>          D(I) contains the updated eigenvalues for
   83: *>          1 <= I <= K.
   84: *> \endverbatim
   85: *>
   86: *> \param[out] Q
   87: *> \verbatim
   88: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
   89: *>          Initially the first K columns are used as workspace.
   90: *>          On output the columns 1 to K contain
   91: *>          the updated eigenvectors.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] LDQ
   95: *> \verbatim
   96: *>          LDQ is INTEGER
   97: *>          The leading dimension of the array Q.  LDQ >= max(1,N).
   98: *> \endverbatim
   99: *>
  100: *> \param[in] RHO
  101: *> \verbatim
  102: *>          RHO is DOUBLE PRECISION
  103: *>          The value of the parameter in the rank one update equation.
  104: *>          RHO >= 0 required.
  105: *> \endverbatim
  106: *>
  107: *> \param[in,out] DLAMDA
  108: *> \verbatim
  109: *>          DLAMDA is DOUBLE PRECISION array, dimension (K)
  110: *>          The first K elements of this array contain the old roots
  111: *>          of the deflated updating problem.  These are the poles
  112: *>          of the secular equation. May be changed on output by
  113: *>          having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
  114: *>          Cray-2, or Cray C-90, as described above.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] Q2
  118: *> \verbatim
  119: *>          Q2 is DOUBLE PRECISION array, dimension (LDQ2*N)
  120: *>          The first K columns of this matrix contain the non-deflated
  121: *>          eigenvectors for the split problem.
  122: *> \endverbatim
  123: *>
  124: *> \param[in] INDX
  125: *> \verbatim
  126: *>          INDX is INTEGER array, dimension (N)
  127: *>          The permutation used to arrange the columns of the deflated
  128: *>          Q matrix into three groups (see DLAED2).
  129: *>          The rows of the eigenvectors found by DLAED4 must be likewise
  130: *>          permuted before the matrix multiply can take place.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] CTOT
  134: *> \verbatim
  135: *>          CTOT is INTEGER array, dimension (4)
  136: *>          A count of the total number of the various types of columns
  137: *>          in Q, as described in INDX.  The fourth column type is any
  138: *>          column which has been deflated.
  139: *> \endverbatim
  140: *>
  141: *> \param[in,out] W
  142: *> \verbatim
  143: *>          W is DOUBLE PRECISION array, dimension (K)
  144: *>          The first K elements of this array contain the components
  145: *>          of the deflation-adjusted updating vector. Destroyed on
  146: *>          output.
  147: *> \endverbatim
  148: *>
  149: *> \param[out] S
  150: *> \verbatim
  151: *>          S is DOUBLE PRECISION array, dimension (N1 + 1)*K
  152: *>          Will contain the eigenvectors of the repaired matrix which
  153: *>          will be multiplied by the previously accumulated eigenvectors
  154: *>          to update the system.
  155: *> \endverbatim
  156: *>
  157: *> \param[out] INFO
  158: *> \verbatim
  159: *>          INFO is INTEGER
  160: *>          = 0:  successful exit.
  161: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  162: *>          > 0:  if INFO = 1, an eigenvalue did not converge
  163: *> \endverbatim
  164: *
  165: *  Authors:
  166: *  ========
  167: *
  168: *> \author Univ. of Tennessee
  169: *> \author Univ. of California Berkeley
  170: *> \author Univ. of Colorado Denver
  171: *> \author NAG Ltd.
  172: *
  173: *> \ingroup auxOTHERcomputational
  174: *
  175: *> \par Contributors:
  176: *  ==================
  177: *>
  178: *> Jeff Rutter, Computer Science Division, University of California
  179: *> at Berkeley, USA \n
  180: *>  Modified by Francoise Tisseur, University of Tennessee
  181: *>
  182: *  =====================================================================
  183:       SUBROUTINE DLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX,
  184:      $                   CTOT, W, S, INFO )
  185: *
  186: *  -- LAPACK computational routine --
  187: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  188: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  189: *
  190: *     .. Scalar Arguments ..
  191:       INTEGER            INFO, K, LDQ, N, N1
  192:       DOUBLE PRECISION   RHO
  193: *     ..
  194: *     .. Array Arguments ..
  195:       INTEGER            CTOT( * ), INDX( * )
  196:       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
  197:      $                   S( * ), W( * )
  198: *     ..
  199: *
  200: *  =====================================================================
  201: *
  202: *     .. Parameters ..
  203:       DOUBLE PRECISION   ONE, ZERO
  204:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
  205: *     ..
  206: *     .. Local Scalars ..
  207:       INTEGER            I, II, IQ2, J, N12, N2, N23
  208:       DOUBLE PRECISION   TEMP
  209: *     ..
  210: *     .. External Functions ..
  211:       DOUBLE PRECISION   DLAMC3, DNRM2
  212:       EXTERNAL           DLAMC3, DNRM2
  213: *     ..
  214: *     .. External Subroutines ..
  215:       EXTERNAL           DCOPY, DGEMM, DLACPY, DLAED4, DLASET, XERBLA
  216: *     ..
  217: *     .. Intrinsic Functions ..
  218:       INTRINSIC          MAX, SIGN, SQRT
  219: *     ..
  220: *     .. Executable Statements ..
  221: *
  222: *     Test the input parameters.
  223: *
  224:       INFO = 0
  225: *
  226:       IF( K.LT.0 ) THEN
  227:          INFO = -1
  228:       ELSE IF( N.LT.K ) THEN
  229:          INFO = -2
  230:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
  231:          INFO = -6
  232:       END IF
  233:       IF( INFO.NE.0 ) THEN
  234:          CALL XERBLA( 'DLAED3', -INFO )
  235:          RETURN
  236:       END IF
  237: *
  238: *     Quick return if possible
  239: *
  240:       IF( K.EQ.0 )
  241:      $   RETURN
  242: *
  243: *     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
  244: *     be computed with high relative accuracy (barring over/underflow).
  245: *     This is a problem on machines without a guard digit in
  246: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
  247: *     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
  248: *     which on any of these machines zeros out the bottommost
  249: *     bit of DLAMDA(I) if it is 1; this makes the subsequent
  250: *     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
  251: *     occurs. On binary machines with a guard digit (almost all
  252: *     machines) it does not change DLAMDA(I) at all. On hexadecimal
  253: *     and decimal machines with a guard digit, it slightly
  254: *     changes the bottommost bits of DLAMDA(I). It does not account
  255: *     for hexadecimal or decimal machines without guard digits
  256: *     (we know of none). We use a subroutine call to compute
  257: *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
  258: *     this code.
  259: *
  260:       DO 10 I = 1, K
  261:          DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
  262:    10 CONTINUE
  263: *
  264:       DO 20 J = 1, K
  265:          CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
  266: *
  267: *        If the zero finder fails, the computation is terminated.
  268: *
  269:          IF( INFO.NE.0 )
  270:      $      GO TO 120
  271:    20 CONTINUE
  272: *
  273:       IF( K.EQ.1 )
  274:      $   GO TO 110
  275:       IF( K.EQ.2 ) THEN
  276:          DO 30 J = 1, K
  277:             W( 1 ) = Q( 1, J )
  278:             W( 2 ) = Q( 2, J )
  279:             II = INDX( 1 )
  280:             Q( 1, J ) = W( II )
  281:             II = INDX( 2 )
  282:             Q( 2, J ) = W( II )
  283:    30    CONTINUE
  284:          GO TO 110
  285:       END IF
  286: *
  287: *     Compute updated W.
  288: *
  289:       CALL DCOPY( K, W, 1, S, 1 )
  290: *
  291: *     Initialize W(I) = Q(I,I)
  292: *
  293:       CALL DCOPY( K, Q, LDQ+1, W, 1 )
  294:       DO 60 J = 1, K
  295:          DO 40 I = 1, J - 1
  296:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
  297:    40    CONTINUE
  298:          DO 50 I = J + 1, K
  299:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
  300:    50    CONTINUE
  301:    60 CONTINUE
  302:       DO 70 I = 1, K
  303:          W( I ) = SIGN( SQRT( -W( I ) ), S( I ) )
  304:    70 CONTINUE
  305: *
  306: *     Compute eigenvectors of the modified rank-1 modification.
  307: *
  308:       DO 100 J = 1, K
  309:          DO 80 I = 1, K
  310:             S( I ) = W( I ) / Q( I, J )
  311:    80    CONTINUE
  312:          TEMP = DNRM2( K, S, 1 )
  313:          DO 90 I = 1, K
  314:             II = INDX( I )
  315:             Q( I, J ) = S( II ) / TEMP
  316:    90    CONTINUE
  317:   100 CONTINUE
  318: *
  319: *     Compute the updated eigenvectors.
  320: *
  321:   110 CONTINUE
  322: *
  323:       N2 = N - N1
  324:       N12 = CTOT( 1 ) + CTOT( 2 )
  325:       N23 = CTOT( 2 ) + CTOT( 3 )
  326: *
  327:       CALL DLACPY( 'A', N23, K, Q( CTOT( 1 )+1, 1 ), LDQ, S, N23 )
  328:       IQ2 = N1*N12 + 1
  329:       IF( N23.NE.0 ) THEN
  330:          CALL DGEMM( 'N', 'N', N2, K, N23, ONE, Q2( IQ2 ), N2, S, N23,
  331:      $               ZERO, Q( N1+1, 1 ), LDQ )
  332:       ELSE
  333:          CALL DLASET( 'A', N2, K, ZERO, ZERO, Q( N1+1, 1 ), LDQ )
  334:       END IF
  335: *
  336:       CALL DLACPY( 'A', N12, K, Q, LDQ, S, N12 )
  337:       IF( N12.NE.0 ) THEN
  338:          CALL DGEMM( 'N', 'N', N1, K, N12, ONE, Q2, N1, S, N12, ZERO, Q,
  339:      $               LDQ )
  340:       ELSE
  341:          CALL DLASET( 'A', N1, K, ZERO, ZERO, Q( 1, 1 ), LDQ )
  342:       END IF
  343: *
  344: *
  345:   120 CONTINUE
  346:       RETURN
  347: *
  348: *     End of DLAED3
  349: *
  350:       END

CVSweb interface <joel.bertrand@systella.fr>