File:  [local] / rpl / lapack / lapack / dlaed3.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE DLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX,
    2:      $                   CTOT, W, S, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       INTEGER            INFO, K, LDQ, N, N1
   11:       DOUBLE PRECISION   RHO
   12: *     ..
   13: *     .. Array Arguments ..
   14:       INTEGER            CTOT( * ), INDX( * )
   15:       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
   16:      $                   S( * ), W( * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  DLAED3 finds the roots of the secular equation, as defined by the
   23: *  values in D, W, and RHO, between 1 and K.  It makes the
   24: *  appropriate calls to DLAED4 and then updates the eigenvectors by
   25: *  multiplying the matrix of eigenvectors of the pair of eigensystems
   26: *  being combined by the matrix of eigenvectors of the K-by-K system
   27: *  which is solved here.
   28: *
   29: *  This code makes very mild assumptions about floating point
   30: *  arithmetic. It will work on machines with a guard digit in
   31: *  add/subtract, or on those binary machines without guard digits
   32: *  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
   33: *  It could conceivably fail on hexadecimal or decimal machines
   34: *  without guard digits, but we know of none.
   35: *
   36: *  Arguments
   37: *  =========
   38: *
   39: *  K       (input) INTEGER
   40: *          The number of terms in the rational function to be solved by
   41: *          DLAED4.  K >= 0.
   42: *
   43: *  N       (input) INTEGER
   44: *          The number of rows and columns in the Q matrix.
   45: *          N >= K (deflation may result in N>K).
   46: *
   47: *  N1      (input) INTEGER
   48: *          The location of the last eigenvalue in the leading submatrix.
   49: *          min(1,N) <= N1 <= N/2.
   50: *
   51: *  D       (output) DOUBLE PRECISION array, dimension (N)
   52: *          D(I) contains the updated eigenvalues for
   53: *          1 <= I <= K.
   54: *
   55: *  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
   56: *          Initially the first K columns are used as workspace.
   57: *          On output the columns 1 to K contain
   58: *          the updated eigenvectors.
   59: *
   60: *  LDQ     (input) INTEGER
   61: *          The leading dimension of the array Q.  LDQ >= max(1,N).
   62: *
   63: *  RHO     (input) DOUBLE PRECISION
   64: *          The value of the parameter in the rank one update equation.
   65: *          RHO >= 0 required.
   66: *
   67: *  DLAMDA  (input/output) DOUBLE PRECISION array, dimension (K)
   68: *          The first K elements of this array contain the old roots
   69: *          of the deflated updating problem.  These are the poles
   70: *          of the secular equation. May be changed on output by
   71: *          having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
   72: *          Cray-2, or Cray C-90, as described above.
   73: *
   74: *  Q2      (input) DOUBLE PRECISION array, dimension (LDQ2, N)
   75: *          The first K columns of this matrix contain the non-deflated
   76: *          eigenvectors for the split problem.
   77: *
   78: *  INDX    (input) INTEGER array, dimension (N)
   79: *          The permutation used to arrange the columns of the deflated
   80: *          Q matrix into three groups (see DLAED2).
   81: *          The rows of the eigenvectors found by DLAED4 must be likewise
   82: *          permuted before the matrix multiply can take place.
   83: *
   84: *  CTOT    (input) INTEGER array, dimension (4)
   85: *          A count of the total number of the various types of columns
   86: *          in Q, as described in INDX.  The fourth column type is any
   87: *          column which has been deflated.
   88: *
   89: *  W       (input/output) DOUBLE PRECISION array, dimension (K)
   90: *          The first K elements of this array contain the components
   91: *          of the deflation-adjusted updating vector. Destroyed on
   92: *          output.
   93: *
   94: *  S       (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K
   95: *          Will contain the eigenvectors of the repaired matrix which
   96: *          will be multiplied by the previously accumulated eigenvectors
   97: *          to update the system.
   98: *
   99: *  LDS     (input) INTEGER
  100: *          The leading dimension of S.  LDS >= max(1,K).
  101: *
  102: *  INFO    (output) INTEGER
  103: *          = 0:  successful exit.
  104: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  105: *          > 0:  if INFO = 1, an eigenvalue did not converge
  106: *
  107: *  Further Details
  108: *  ===============
  109: *
  110: *  Based on contributions by
  111: *     Jeff Rutter, Computer Science Division, University of California
  112: *     at Berkeley, USA
  113: *  Modified by Francoise Tisseur, University of Tennessee.
  114: *
  115: *  =====================================================================
  116: *
  117: *     .. Parameters ..
  118:       DOUBLE PRECISION   ONE, ZERO
  119:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
  120: *     ..
  121: *     .. Local Scalars ..
  122:       INTEGER            I, II, IQ2, J, N12, N2, N23
  123:       DOUBLE PRECISION   TEMP
  124: *     ..
  125: *     .. External Functions ..
  126:       DOUBLE PRECISION   DLAMC3, DNRM2
  127:       EXTERNAL           DLAMC3, DNRM2
  128: *     ..
  129: *     .. External Subroutines ..
  130:       EXTERNAL           DCOPY, DGEMM, DLACPY, DLAED4, DLASET, XERBLA
  131: *     ..
  132: *     .. Intrinsic Functions ..
  133:       INTRINSIC          MAX, SIGN, SQRT
  134: *     ..
  135: *     .. Executable Statements ..
  136: *
  137: *     Test the input parameters.
  138: *
  139:       INFO = 0
  140: *
  141:       IF( K.LT.0 ) THEN
  142:          INFO = -1
  143:       ELSE IF( N.LT.K ) THEN
  144:          INFO = -2
  145:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
  146:          INFO = -6
  147:       END IF
  148:       IF( INFO.NE.0 ) THEN
  149:          CALL XERBLA( 'DLAED3', -INFO )
  150:          RETURN
  151:       END IF
  152: *
  153: *     Quick return if possible
  154: *
  155:       IF( K.EQ.0 )
  156:      $   RETURN
  157: *
  158: *     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
  159: *     be computed with high relative accuracy (barring over/underflow).
  160: *     This is a problem on machines without a guard digit in
  161: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
  162: *     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
  163: *     which on any of these machines zeros out the bottommost
  164: *     bit of DLAMDA(I) if it is 1; this makes the subsequent
  165: *     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
  166: *     occurs. On binary machines with a guard digit (almost all
  167: *     machines) it does not change DLAMDA(I) at all. On hexadecimal
  168: *     and decimal machines with a guard digit, it slightly
  169: *     changes the bottommost bits of DLAMDA(I). It does not account
  170: *     for hexadecimal or decimal machines without guard digits
  171: *     (we know of none). We use a subroutine call to compute
  172: *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
  173: *     this code.
  174: *
  175:       DO 10 I = 1, K
  176:          DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
  177:    10 CONTINUE
  178: *
  179:       DO 20 J = 1, K
  180:          CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
  181: *
  182: *        If the zero finder fails, the computation is terminated.
  183: *
  184:          IF( INFO.NE.0 )
  185:      $      GO TO 120
  186:    20 CONTINUE
  187: *
  188:       IF( K.EQ.1 )
  189:      $   GO TO 110
  190:       IF( K.EQ.2 ) THEN
  191:          DO 30 J = 1, K
  192:             W( 1 ) = Q( 1, J )
  193:             W( 2 ) = Q( 2, J )
  194:             II = INDX( 1 )
  195:             Q( 1, J ) = W( II )
  196:             II = INDX( 2 )
  197:             Q( 2, J ) = W( II )
  198:    30    CONTINUE
  199:          GO TO 110
  200:       END IF
  201: *
  202: *     Compute updated W.
  203: *
  204:       CALL DCOPY( K, W, 1, S, 1 )
  205: *
  206: *     Initialize W(I) = Q(I,I)
  207: *
  208:       CALL DCOPY( K, Q, LDQ+1, W, 1 )
  209:       DO 60 J = 1, K
  210:          DO 40 I = 1, J - 1
  211:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
  212:    40    CONTINUE
  213:          DO 50 I = J + 1, K
  214:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
  215:    50    CONTINUE
  216:    60 CONTINUE
  217:       DO 70 I = 1, K
  218:          W( I ) = SIGN( SQRT( -W( I ) ), S( I ) )
  219:    70 CONTINUE
  220: *
  221: *     Compute eigenvectors of the modified rank-1 modification.
  222: *
  223:       DO 100 J = 1, K
  224:          DO 80 I = 1, K
  225:             S( I ) = W( I ) / Q( I, J )
  226:    80    CONTINUE
  227:          TEMP = DNRM2( K, S, 1 )
  228:          DO 90 I = 1, K
  229:             II = INDX( I )
  230:             Q( I, J ) = S( II ) / TEMP
  231:    90    CONTINUE
  232:   100 CONTINUE
  233: *
  234: *     Compute the updated eigenvectors.
  235: *
  236:   110 CONTINUE
  237: *
  238:       N2 = N - N1
  239:       N12 = CTOT( 1 ) + CTOT( 2 )
  240:       N23 = CTOT( 2 ) + CTOT( 3 )
  241: *
  242:       CALL DLACPY( 'A', N23, K, Q( CTOT( 1 )+1, 1 ), LDQ, S, N23 )
  243:       IQ2 = N1*N12 + 1
  244:       IF( N23.NE.0 ) THEN
  245:          CALL DGEMM( 'N', 'N', N2, K, N23, ONE, Q2( IQ2 ), N2, S, N23,
  246:      $               ZERO, Q( N1+1, 1 ), LDQ )
  247:       ELSE
  248:          CALL DLASET( 'A', N2, K, ZERO, ZERO, Q( N1+1, 1 ), LDQ )
  249:       END IF
  250: *
  251:       CALL DLACPY( 'A', N12, K, Q, LDQ, S, N12 )
  252:       IF( N12.NE.0 ) THEN
  253:          CALL DGEMM( 'N', 'N', N1, K, N12, ONE, Q2, N1, S, N12, ZERO, Q,
  254:      $               LDQ )
  255:       ELSE
  256:          CALL DLASET( 'A', N1, K, ZERO, ZERO, Q( 1, 1 ), LDQ )
  257:       END IF
  258: *
  259: *
  260:   120 CONTINUE
  261:       RETURN
  262: *
  263: *     End of DLAED3
  264: *
  265:       END

CVSweb interface <joel.bertrand@systella.fr>