Annotation of rpl/lapack/lapack/dlaed3.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b DLAED3
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLAED3 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed3.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed3.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed3.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX,
        !            22: *                          CTOT, W, S, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            INFO, K, LDQ, N, N1
        !            26: *       DOUBLE PRECISION   RHO
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       INTEGER            CTOT( * ), INDX( * )
        !            30: *       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
        !            31: *      $                   S( * ), W( * )
        !            32: *       ..
        !            33: *  
        !            34: *
        !            35: *> \par Purpose:
        !            36: *  =============
        !            37: *>
        !            38: *> \verbatim
        !            39: *>
        !            40: *> DLAED3 finds the roots of the secular equation, as defined by the
        !            41: *> values in D, W, and RHO, between 1 and K.  It makes the
        !            42: *> appropriate calls to DLAED4 and then updates the eigenvectors by
        !            43: *> multiplying the matrix of eigenvectors of the pair of eigensystems
        !            44: *> being combined by the matrix of eigenvectors of the K-by-K system
        !            45: *> which is solved here.
        !            46: *>
        !            47: *> This code makes very mild assumptions about floating point
        !            48: *> arithmetic. It will work on machines with a guard digit in
        !            49: *> add/subtract, or on those binary machines without guard digits
        !            50: *> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
        !            51: *> It could conceivably fail on hexadecimal or decimal machines
        !            52: *> without guard digits, but we know of none.
        !            53: *> \endverbatim
        !            54: *
        !            55: *  Arguments:
        !            56: *  ==========
        !            57: *
        !            58: *> \param[in] K
        !            59: *> \verbatim
        !            60: *>          K is INTEGER
        !            61: *>          The number of terms in the rational function to be solved by
        !            62: *>          DLAED4.  K >= 0.
        !            63: *> \endverbatim
        !            64: *>
        !            65: *> \param[in] N
        !            66: *> \verbatim
        !            67: *>          N is INTEGER
        !            68: *>          The number of rows and columns in the Q matrix.
        !            69: *>          N >= K (deflation may result in N>K).
        !            70: *> \endverbatim
        !            71: *>
        !            72: *> \param[in] N1
        !            73: *> \verbatim
        !            74: *>          N1 is INTEGER
        !            75: *>          The location of the last eigenvalue in the leading submatrix.
        !            76: *>          min(1,N) <= N1 <= N/2.
        !            77: *> \endverbatim
        !            78: *>
        !            79: *> \param[out] D
        !            80: *> \verbatim
        !            81: *>          D is DOUBLE PRECISION array, dimension (N)
        !            82: *>          D(I) contains the updated eigenvalues for
        !            83: *>          1 <= I <= K.
        !            84: *> \endverbatim
        !            85: *>
        !            86: *> \param[out] Q
        !            87: *> \verbatim
        !            88: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
        !            89: *>          Initially the first K columns are used as workspace.
        !            90: *>          On output the columns 1 to K contain
        !            91: *>          the updated eigenvectors.
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[in] LDQ
        !            95: *> \verbatim
        !            96: *>          LDQ is INTEGER
        !            97: *>          The leading dimension of the array Q.  LDQ >= max(1,N).
        !            98: *> \endverbatim
        !            99: *>
        !           100: *> \param[in] RHO
        !           101: *> \verbatim
        !           102: *>          RHO is DOUBLE PRECISION
        !           103: *>          The value of the parameter in the rank one update equation.
        !           104: *>          RHO >= 0 required.
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[in,out] DLAMDA
        !           108: *> \verbatim
        !           109: *>          DLAMDA is DOUBLE PRECISION array, dimension (K)
        !           110: *>          The first K elements of this array contain the old roots
        !           111: *>          of the deflated updating problem.  These are the poles
        !           112: *>          of the secular equation. May be changed on output by
        !           113: *>          having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
        !           114: *>          Cray-2, or Cray C-90, as described above.
        !           115: *> \endverbatim
        !           116: *>
        !           117: *> \param[in] Q2
        !           118: *> \verbatim
        !           119: *>          Q2 is DOUBLE PRECISION array, dimension (LDQ2, N)
        !           120: *>          The first K columns of this matrix contain the non-deflated
        !           121: *>          eigenvectors for the split problem.
        !           122: *> \endverbatim
        !           123: *>
        !           124: *> \param[in] INDX
        !           125: *> \verbatim
        !           126: *>          INDX is INTEGER array, dimension (N)
        !           127: *>          The permutation used to arrange the columns of the deflated
        !           128: *>          Q matrix into three groups (see DLAED2).
        !           129: *>          The rows of the eigenvectors found by DLAED4 must be likewise
        !           130: *>          permuted before the matrix multiply can take place.
        !           131: *> \endverbatim
        !           132: *>
        !           133: *> \param[in] CTOT
        !           134: *> \verbatim
        !           135: *>          CTOT is INTEGER array, dimension (4)
        !           136: *>          A count of the total number of the various types of columns
        !           137: *>          in Q, as described in INDX.  The fourth column type is any
        !           138: *>          column which has been deflated.
        !           139: *> \endverbatim
        !           140: *>
        !           141: *> \param[in,out] W
        !           142: *> \verbatim
        !           143: *>          W is DOUBLE PRECISION array, dimension (K)
        !           144: *>          The first K elements of this array contain the components
        !           145: *>          of the deflation-adjusted updating vector. Destroyed on
        !           146: *>          output.
        !           147: *> \endverbatim
        !           148: *>
        !           149: *> \param[out] S
        !           150: *> \verbatim
        !           151: *>          S is DOUBLE PRECISION array, dimension (N1 + 1)*K
        !           152: *>          Will contain the eigenvectors of the repaired matrix which
        !           153: *>          will be multiplied by the previously accumulated eigenvectors
        !           154: *>          to update the system.
        !           155: *> \endverbatim
        !           156: *>
        !           157: *> \param[out] INFO
        !           158: *> \verbatim
        !           159: *>          INFO is INTEGER
        !           160: *>          = 0:  successful exit.
        !           161: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           162: *>          > 0:  if INFO = 1, an eigenvalue did not converge
        !           163: *> \endverbatim
        !           164: *
        !           165: *  Authors:
        !           166: *  ========
        !           167: *
        !           168: *> \author Univ. of Tennessee 
        !           169: *> \author Univ. of California Berkeley 
        !           170: *> \author Univ. of Colorado Denver 
        !           171: *> \author NAG Ltd. 
        !           172: *
        !           173: *> \date November 2011
        !           174: *
        !           175: *> \ingroup auxOTHERcomputational
        !           176: *
        !           177: *> \par Contributors:
        !           178: *  ==================
        !           179: *>
        !           180: *> Jeff Rutter, Computer Science Division, University of California
        !           181: *> at Berkeley, USA \n
        !           182: *>  Modified by Francoise Tisseur, University of Tennessee
        !           183: *>
        !           184: *  =====================================================================
1.1       bertrand  185:       SUBROUTINE DLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX,
                    186:      $                   CTOT, W, S, INFO )
                    187: *
1.8     ! bertrand  188: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  189: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    190: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  191: *     November 2011
1.1       bertrand  192: *
                    193: *     .. Scalar Arguments ..
                    194:       INTEGER            INFO, K, LDQ, N, N1
                    195:       DOUBLE PRECISION   RHO
                    196: *     ..
                    197: *     .. Array Arguments ..
                    198:       INTEGER            CTOT( * ), INDX( * )
                    199:       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
                    200:      $                   S( * ), W( * )
                    201: *     ..
                    202: *
                    203: *  =====================================================================
                    204: *
                    205: *     .. Parameters ..
                    206:       DOUBLE PRECISION   ONE, ZERO
                    207:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
                    208: *     ..
                    209: *     .. Local Scalars ..
                    210:       INTEGER            I, II, IQ2, J, N12, N2, N23
                    211:       DOUBLE PRECISION   TEMP
                    212: *     ..
                    213: *     .. External Functions ..
                    214:       DOUBLE PRECISION   DLAMC3, DNRM2
                    215:       EXTERNAL           DLAMC3, DNRM2
                    216: *     ..
                    217: *     .. External Subroutines ..
                    218:       EXTERNAL           DCOPY, DGEMM, DLACPY, DLAED4, DLASET, XERBLA
                    219: *     ..
                    220: *     .. Intrinsic Functions ..
                    221:       INTRINSIC          MAX, SIGN, SQRT
                    222: *     ..
                    223: *     .. Executable Statements ..
                    224: *
                    225: *     Test the input parameters.
                    226: *
                    227:       INFO = 0
                    228: *
                    229:       IF( K.LT.0 ) THEN
                    230:          INFO = -1
                    231:       ELSE IF( N.LT.K ) THEN
                    232:          INFO = -2
                    233:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
                    234:          INFO = -6
                    235:       END IF
                    236:       IF( INFO.NE.0 ) THEN
                    237:          CALL XERBLA( 'DLAED3', -INFO )
                    238:          RETURN
                    239:       END IF
                    240: *
                    241: *     Quick return if possible
                    242: *
                    243:       IF( K.EQ.0 )
                    244:      $   RETURN
                    245: *
                    246: *     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
                    247: *     be computed with high relative accuracy (barring over/underflow).
                    248: *     This is a problem on machines without a guard digit in
                    249: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
                    250: *     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
                    251: *     which on any of these machines zeros out the bottommost
                    252: *     bit of DLAMDA(I) if it is 1; this makes the subsequent
                    253: *     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
                    254: *     occurs. On binary machines with a guard digit (almost all
                    255: *     machines) it does not change DLAMDA(I) at all. On hexadecimal
                    256: *     and decimal machines with a guard digit, it slightly
                    257: *     changes the bottommost bits of DLAMDA(I). It does not account
                    258: *     for hexadecimal or decimal machines without guard digits
                    259: *     (we know of none). We use a subroutine call to compute
                    260: *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
                    261: *     this code.
                    262: *
                    263:       DO 10 I = 1, K
                    264:          DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
                    265:    10 CONTINUE
                    266: *
                    267:       DO 20 J = 1, K
                    268:          CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
                    269: *
                    270: *        If the zero finder fails, the computation is terminated.
                    271: *
                    272:          IF( INFO.NE.0 )
                    273:      $      GO TO 120
                    274:    20 CONTINUE
                    275: *
                    276:       IF( K.EQ.1 )
                    277:      $   GO TO 110
                    278:       IF( K.EQ.2 ) THEN
                    279:          DO 30 J = 1, K
                    280:             W( 1 ) = Q( 1, J )
                    281:             W( 2 ) = Q( 2, J )
                    282:             II = INDX( 1 )
                    283:             Q( 1, J ) = W( II )
                    284:             II = INDX( 2 )
                    285:             Q( 2, J ) = W( II )
                    286:    30    CONTINUE
                    287:          GO TO 110
                    288:       END IF
                    289: *
                    290: *     Compute updated W.
                    291: *
                    292:       CALL DCOPY( K, W, 1, S, 1 )
                    293: *
                    294: *     Initialize W(I) = Q(I,I)
                    295: *
                    296:       CALL DCOPY( K, Q, LDQ+1, W, 1 )
                    297:       DO 60 J = 1, K
                    298:          DO 40 I = 1, J - 1
                    299:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
                    300:    40    CONTINUE
                    301:          DO 50 I = J + 1, K
                    302:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
                    303:    50    CONTINUE
                    304:    60 CONTINUE
                    305:       DO 70 I = 1, K
                    306:          W( I ) = SIGN( SQRT( -W( I ) ), S( I ) )
                    307:    70 CONTINUE
                    308: *
                    309: *     Compute eigenvectors of the modified rank-1 modification.
                    310: *
                    311:       DO 100 J = 1, K
                    312:          DO 80 I = 1, K
                    313:             S( I ) = W( I ) / Q( I, J )
                    314:    80    CONTINUE
                    315:          TEMP = DNRM2( K, S, 1 )
                    316:          DO 90 I = 1, K
                    317:             II = INDX( I )
                    318:             Q( I, J ) = S( II ) / TEMP
                    319:    90    CONTINUE
                    320:   100 CONTINUE
                    321: *
                    322: *     Compute the updated eigenvectors.
                    323: *
                    324:   110 CONTINUE
                    325: *
                    326:       N2 = N - N1
                    327:       N12 = CTOT( 1 ) + CTOT( 2 )
                    328:       N23 = CTOT( 2 ) + CTOT( 3 )
                    329: *
                    330:       CALL DLACPY( 'A', N23, K, Q( CTOT( 1 )+1, 1 ), LDQ, S, N23 )
                    331:       IQ2 = N1*N12 + 1
                    332:       IF( N23.NE.0 ) THEN
                    333:          CALL DGEMM( 'N', 'N', N2, K, N23, ONE, Q2( IQ2 ), N2, S, N23,
                    334:      $               ZERO, Q( N1+1, 1 ), LDQ )
                    335:       ELSE
                    336:          CALL DLASET( 'A', N2, K, ZERO, ZERO, Q( N1+1, 1 ), LDQ )
                    337:       END IF
                    338: *
                    339:       CALL DLACPY( 'A', N12, K, Q, LDQ, S, N12 )
                    340:       IF( N12.NE.0 ) THEN
                    341:          CALL DGEMM( 'N', 'N', N1, K, N12, ONE, Q2, N1, S, N12, ZERO, Q,
                    342:      $               LDQ )
                    343:       ELSE
                    344:          CALL DLASET( 'A', N1, K, ZERO, ZERO, Q( 1, 1 ), LDQ )
                    345:       END IF
                    346: *
                    347: *
                    348:   120 CONTINUE
                    349:       RETURN
                    350: *
                    351: *     End of DLAED3
                    352: *
                    353:       END

CVSweb interface <joel.bertrand@systella.fr>