Annotation of rpl/lapack/lapack/dlaed3.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE DLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX,
                      2:      $                   CTOT, W, S, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            INFO, K, LDQ, N, N1
                     11:       DOUBLE PRECISION   RHO
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            CTOT( * ), INDX( * )
                     15:       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
                     16:      $                   S( * ), W( * )
                     17: *     ..
                     18: *
                     19: *  Purpose
                     20: *  =======
                     21: *
                     22: *  DLAED3 finds the roots of the secular equation, as defined by the
                     23: *  values in D, W, and RHO, between 1 and K.  It makes the
                     24: *  appropriate calls to DLAED4 and then updates the eigenvectors by
                     25: *  multiplying the matrix of eigenvectors of the pair of eigensystems
                     26: *  being combined by the matrix of eigenvectors of the K-by-K system
                     27: *  which is solved here.
                     28: *
                     29: *  This code makes very mild assumptions about floating point
                     30: *  arithmetic. It will work on machines with a guard digit in
                     31: *  add/subtract, or on those binary machines without guard digits
                     32: *  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
                     33: *  It could conceivably fail on hexadecimal or decimal machines
                     34: *  without guard digits, but we know of none.
                     35: *
                     36: *  Arguments
                     37: *  =========
                     38: *
                     39: *  K       (input) INTEGER
                     40: *          The number of terms in the rational function to be solved by
                     41: *          DLAED4.  K >= 0.
                     42: *
                     43: *  N       (input) INTEGER
                     44: *          The number of rows and columns in the Q matrix.
                     45: *          N >= K (deflation may result in N>K).
                     46: *
                     47: *  N1      (input) INTEGER
                     48: *          The location of the last eigenvalue in the leading submatrix.
                     49: *          min(1,N) <= N1 <= N/2.
                     50: *
                     51: *  D       (output) DOUBLE PRECISION array, dimension (N)
                     52: *          D(I) contains the updated eigenvalues for
                     53: *          1 <= I <= K.
                     54: *
                     55: *  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
                     56: *          Initially the first K columns are used as workspace.
                     57: *          On output the columns 1 to K contain
                     58: *          the updated eigenvectors.
                     59: *
                     60: *  LDQ     (input) INTEGER
                     61: *          The leading dimension of the array Q.  LDQ >= max(1,N).
                     62: *
                     63: *  RHO     (input) DOUBLE PRECISION
                     64: *          The value of the parameter in the rank one update equation.
                     65: *          RHO >= 0 required.
                     66: *
                     67: *  DLAMDA  (input/output) DOUBLE PRECISION array, dimension (K)
                     68: *          The first K elements of this array contain the old roots
                     69: *          of the deflated updating problem.  These are the poles
                     70: *          of the secular equation. May be changed on output by
                     71: *          having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
                     72: *          Cray-2, or Cray C-90, as described above.
                     73: *
                     74: *  Q2      (input) DOUBLE PRECISION array, dimension (LDQ2, N)
                     75: *          The first K columns of this matrix contain the non-deflated
                     76: *          eigenvectors for the split problem.
                     77: *
                     78: *  INDX    (input) INTEGER array, dimension (N)
                     79: *          The permutation used to arrange the columns of the deflated
                     80: *          Q matrix into three groups (see DLAED2).
                     81: *          The rows of the eigenvectors found by DLAED4 must be likewise
                     82: *          permuted before the matrix multiply can take place.
                     83: *
                     84: *  CTOT    (input) INTEGER array, dimension (4)
                     85: *          A count of the total number of the various types of columns
                     86: *          in Q, as described in INDX.  The fourth column type is any
                     87: *          column which has been deflated.
                     88: *
                     89: *  W       (input/output) DOUBLE PRECISION array, dimension (K)
                     90: *          The first K elements of this array contain the components
                     91: *          of the deflation-adjusted updating vector. Destroyed on
                     92: *          output.
                     93: *
                     94: *  S       (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K
                     95: *          Will contain the eigenvectors of the repaired matrix which
                     96: *          will be multiplied by the previously accumulated eigenvectors
                     97: *          to update the system.
                     98: *
                     99: *  LDS     (input) INTEGER
                    100: *          The leading dimension of S.  LDS >= max(1,K).
                    101: *
                    102: *  INFO    (output) INTEGER
                    103: *          = 0:  successful exit.
                    104: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    105: *          > 0:  if INFO = 1, an eigenvalue did not converge
                    106: *
                    107: *  Further Details
                    108: *  ===============
                    109: *
                    110: *  Based on contributions by
                    111: *     Jeff Rutter, Computer Science Division, University of California
                    112: *     at Berkeley, USA
                    113: *  Modified by Francoise Tisseur, University of Tennessee.
                    114: *
                    115: *  =====================================================================
                    116: *
                    117: *     .. Parameters ..
                    118:       DOUBLE PRECISION   ONE, ZERO
                    119:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
                    120: *     ..
                    121: *     .. Local Scalars ..
                    122:       INTEGER            I, II, IQ2, J, N12, N2, N23
                    123:       DOUBLE PRECISION   TEMP
                    124: *     ..
                    125: *     .. External Functions ..
                    126:       DOUBLE PRECISION   DLAMC3, DNRM2
                    127:       EXTERNAL           DLAMC3, DNRM2
                    128: *     ..
                    129: *     .. External Subroutines ..
                    130:       EXTERNAL           DCOPY, DGEMM, DLACPY, DLAED4, DLASET, XERBLA
                    131: *     ..
                    132: *     .. Intrinsic Functions ..
                    133:       INTRINSIC          MAX, SIGN, SQRT
                    134: *     ..
                    135: *     .. Executable Statements ..
                    136: *
                    137: *     Test the input parameters.
                    138: *
                    139:       INFO = 0
                    140: *
                    141:       IF( K.LT.0 ) THEN
                    142:          INFO = -1
                    143:       ELSE IF( N.LT.K ) THEN
                    144:          INFO = -2
                    145:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
                    146:          INFO = -6
                    147:       END IF
                    148:       IF( INFO.NE.0 ) THEN
                    149:          CALL XERBLA( 'DLAED3', -INFO )
                    150:          RETURN
                    151:       END IF
                    152: *
                    153: *     Quick return if possible
                    154: *
                    155:       IF( K.EQ.0 )
                    156:      $   RETURN
                    157: *
                    158: *     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
                    159: *     be computed with high relative accuracy (barring over/underflow).
                    160: *     This is a problem on machines without a guard digit in
                    161: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
                    162: *     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
                    163: *     which on any of these machines zeros out the bottommost
                    164: *     bit of DLAMDA(I) if it is 1; this makes the subsequent
                    165: *     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
                    166: *     occurs. On binary machines with a guard digit (almost all
                    167: *     machines) it does not change DLAMDA(I) at all. On hexadecimal
                    168: *     and decimal machines with a guard digit, it slightly
                    169: *     changes the bottommost bits of DLAMDA(I). It does not account
                    170: *     for hexadecimal or decimal machines without guard digits
                    171: *     (we know of none). We use a subroutine call to compute
                    172: *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
                    173: *     this code.
                    174: *
                    175:       DO 10 I = 1, K
                    176:          DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
                    177:    10 CONTINUE
                    178: *
                    179:       DO 20 J = 1, K
                    180:          CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
                    181: *
                    182: *        If the zero finder fails, the computation is terminated.
                    183: *
                    184:          IF( INFO.NE.0 )
                    185:      $      GO TO 120
                    186:    20 CONTINUE
                    187: *
                    188:       IF( K.EQ.1 )
                    189:      $   GO TO 110
                    190:       IF( K.EQ.2 ) THEN
                    191:          DO 30 J = 1, K
                    192:             W( 1 ) = Q( 1, J )
                    193:             W( 2 ) = Q( 2, J )
                    194:             II = INDX( 1 )
                    195:             Q( 1, J ) = W( II )
                    196:             II = INDX( 2 )
                    197:             Q( 2, J ) = W( II )
                    198:    30    CONTINUE
                    199:          GO TO 110
                    200:       END IF
                    201: *
                    202: *     Compute updated W.
                    203: *
                    204:       CALL DCOPY( K, W, 1, S, 1 )
                    205: *
                    206: *     Initialize W(I) = Q(I,I)
                    207: *
                    208:       CALL DCOPY( K, Q, LDQ+1, W, 1 )
                    209:       DO 60 J = 1, K
                    210:          DO 40 I = 1, J - 1
                    211:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
                    212:    40    CONTINUE
                    213:          DO 50 I = J + 1, K
                    214:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
                    215:    50    CONTINUE
                    216:    60 CONTINUE
                    217:       DO 70 I = 1, K
                    218:          W( I ) = SIGN( SQRT( -W( I ) ), S( I ) )
                    219:    70 CONTINUE
                    220: *
                    221: *     Compute eigenvectors of the modified rank-1 modification.
                    222: *
                    223:       DO 100 J = 1, K
                    224:          DO 80 I = 1, K
                    225:             S( I ) = W( I ) / Q( I, J )
                    226:    80    CONTINUE
                    227:          TEMP = DNRM2( K, S, 1 )
                    228:          DO 90 I = 1, K
                    229:             II = INDX( I )
                    230:             Q( I, J ) = S( II ) / TEMP
                    231:    90    CONTINUE
                    232:   100 CONTINUE
                    233: *
                    234: *     Compute the updated eigenvectors.
                    235: *
                    236:   110 CONTINUE
                    237: *
                    238:       N2 = N - N1
                    239:       N12 = CTOT( 1 ) + CTOT( 2 )
                    240:       N23 = CTOT( 2 ) + CTOT( 3 )
                    241: *
                    242:       CALL DLACPY( 'A', N23, K, Q( CTOT( 1 )+1, 1 ), LDQ, S, N23 )
                    243:       IQ2 = N1*N12 + 1
                    244:       IF( N23.NE.0 ) THEN
                    245:          CALL DGEMM( 'N', 'N', N2, K, N23, ONE, Q2( IQ2 ), N2, S, N23,
                    246:      $               ZERO, Q( N1+1, 1 ), LDQ )
                    247:       ELSE
                    248:          CALL DLASET( 'A', N2, K, ZERO, ZERO, Q( N1+1, 1 ), LDQ )
                    249:       END IF
                    250: *
                    251:       CALL DLACPY( 'A', N12, K, Q, LDQ, S, N12 )
                    252:       IF( N12.NE.0 ) THEN
                    253:          CALL DGEMM( 'N', 'N', N1, K, N12, ONE, Q2, N1, S, N12, ZERO, Q,
                    254:      $               LDQ )
                    255:       ELSE
                    256:          CALL DLASET( 'A', N1, K, ZERO, ZERO, Q( 1, 1 ), LDQ )
                    257:       END IF
                    258: *
                    259: *
                    260:   120 CONTINUE
                    261:       RETURN
                    262: *
                    263: *     End of DLAED3
                    264: *
                    265:       END

CVSweb interface <joel.bertrand@systella.fr>