Annotation of rpl/lapack/lapack/dlaed3.f, revision 1.11

1.11    ! bertrand    1: *> \brief \b DLAED3 used by sstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is tridiagonal.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLAED3 + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed3.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed3.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed3.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX,
                     22: *                          CTOT, W, S, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, K, LDQ, N, N1
                     26: *       DOUBLE PRECISION   RHO
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            CTOT( * ), INDX( * )
                     30: *       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
                     31: *      $                   S( * ), W( * )
                     32: *       ..
                     33: *  
                     34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> DLAED3 finds the roots of the secular equation, as defined by the
                     41: *> values in D, W, and RHO, between 1 and K.  It makes the
                     42: *> appropriate calls to DLAED4 and then updates the eigenvectors by
                     43: *> multiplying the matrix of eigenvectors of the pair of eigensystems
                     44: *> being combined by the matrix of eigenvectors of the K-by-K system
                     45: *> which is solved here.
                     46: *>
                     47: *> This code makes very mild assumptions about floating point
                     48: *> arithmetic. It will work on machines with a guard digit in
                     49: *> add/subtract, or on those binary machines without guard digits
                     50: *> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
                     51: *> It could conceivably fail on hexadecimal or decimal machines
                     52: *> without guard digits, but we know of none.
                     53: *> \endverbatim
                     54: *
                     55: *  Arguments:
                     56: *  ==========
                     57: *
                     58: *> \param[in] K
                     59: *> \verbatim
                     60: *>          K is INTEGER
                     61: *>          The number of terms in the rational function to be solved by
                     62: *>          DLAED4.  K >= 0.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] N
                     66: *> \verbatim
                     67: *>          N is INTEGER
                     68: *>          The number of rows and columns in the Q matrix.
                     69: *>          N >= K (deflation may result in N>K).
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] N1
                     73: *> \verbatim
                     74: *>          N1 is INTEGER
                     75: *>          The location of the last eigenvalue in the leading submatrix.
                     76: *>          min(1,N) <= N1 <= N/2.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[out] D
                     80: *> \verbatim
                     81: *>          D is DOUBLE PRECISION array, dimension (N)
                     82: *>          D(I) contains the updated eigenvalues for
                     83: *>          1 <= I <= K.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[out] Q
                     87: *> \verbatim
                     88: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
                     89: *>          Initially the first K columns are used as workspace.
                     90: *>          On output the columns 1 to K contain
                     91: *>          the updated eigenvectors.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] LDQ
                     95: *> \verbatim
                     96: *>          LDQ is INTEGER
                     97: *>          The leading dimension of the array Q.  LDQ >= max(1,N).
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] RHO
                    101: *> \verbatim
                    102: *>          RHO is DOUBLE PRECISION
                    103: *>          The value of the parameter in the rank one update equation.
                    104: *>          RHO >= 0 required.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in,out] DLAMDA
                    108: *> \verbatim
                    109: *>          DLAMDA is DOUBLE PRECISION array, dimension (K)
                    110: *>          The first K elements of this array contain the old roots
                    111: *>          of the deflated updating problem.  These are the poles
                    112: *>          of the secular equation. May be changed on output by
                    113: *>          having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
                    114: *>          Cray-2, or Cray C-90, as described above.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] Q2
                    118: *> \verbatim
                    119: *>          Q2 is DOUBLE PRECISION array, dimension (LDQ2, N)
                    120: *>          The first K columns of this matrix contain the non-deflated
                    121: *>          eigenvectors for the split problem.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in] INDX
                    125: *> \verbatim
                    126: *>          INDX is INTEGER array, dimension (N)
                    127: *>          The permutation used to arrange the columns of the deflated
                    128: *>          Q matrix into three groups (see DLAED2).
                    129: *>          The rows of the eigenvectors found by DLAED4 must be likewise
                    130: *>          permuted before the matrix multiply can take place.
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[in] CTOT
                    134: *> \verbatim
                    135: *>          CTOT is INTEGER array, dimension (4)
                    136: *>          A count of the total number of the various types of columns
                    137: *>          in Q, as described in INDX.  The fourth column type is any
                    138: *>          column which has been deflated.
                    139: *> \endverbatim
                    140: *>
                    141: *> \param[in,out] W
                    142: *> \verbatim
                    143: *>          W is DOUBLE PRECISION array, dimension (K)
                    144: *>          The first K elements of this array contain the components
                    145: *>          of the deflation-adjusted updating vector. Destroyed on
                    146: *>          output.
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[out] S
                    150: *> \verbatim
                    151: *>          S is DOUBLE PRECISION array, dimension (N1 + 1)*K
                    152: *>          Will contain the eigenvectors of the repaired matrix which
                    153: *>          will be multiplied by the previously accumulated eigenvectors
                    154: *>          to update the system.
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[out] INFO
                    158: *> \verbatim
                    159: *>          INFO is INTEGER
                    160: *>          = 0:  successful exit.
                    161: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    162: *>          > 0:  if INFO = 1, an eigenvalue did not converge
                    163: *> \endverbatim
                    164: *
                    165: *  Authors:
                    166: *  ========
                    167: *
                    168: *> \author Univ. of Tennessee 
                    169: *> \author Univ. of California Berkeley 
                    170: *> \author Univ. of Colorado Denver 
                    171: *> \author NAG Ltd. 
                    172: *
1.11    ! bertrand  173: *> \date September 2012
1.8       bertrand  174: *
                    175: *> \ingroup auxOTHERcomputational
                    176: *
                    177: *> \par Contributors:
                    178: *  ==================
                    179: *>
                    180: *> Jeff Rutter, Computer Science Division, University of California
                    181: *> at Berkeley, USA \n
                    182: *>  Modified by Francoise Tisseur, University of Tennessee
                    183: *>
                    184: *  =====================================================================
1.1       bertrand  185:       SUBROUTINE DLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX,
                    186:      $                   CTOT, W, S, INFO )
                    187: *
1.11    ! bertrand  188: *  -- LAPACK computational routine (version 3.4.2) --
1.1       bertrand  189: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    190: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.11    ! bertrand  191: *     September 2012
1.1       bertrand  192: *
                    193: *     .. Scalar Arguments ..
                    194:       INTEGER            INFO, K, LDQ, N, N1
                    195:       DOUBLE PRECISION   RHO
                    196: *     ..
                    197: *     .. Array Arguments ..
                    198:       INTEGER            CTOT( * ), INDX( * )
                    199:       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
                    200:      $                   S( * ), W( * )
                    201: *     ..
                    202: *
                    203: *  =====================================================================
                    204: *
                    205: *     .. Parameters ..
                    206:       DOUBLE PRECISION   ONE, ZERO
                    207:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
                    208: *     ..
                    209: *     .. Local Scalars ..
                    210:       INTEGER            I, II, IQ2, J, N12, N2, N23
                    211:       DOUBLE PRECISION   TEMP
                    212: *     ..
                    213: *     .. External Functions ..
                    214:       DOUBLE PRECISION   DLAMC3, DNRM2
                    215:       EXTERNAL           DLAMC3, DNRM2
                    216: *     ..
                    217: *     .. External Subroutines ..
                    218:       EXTERNAL           DCOPY, DGEMM, DLACPY, DLAED4, DLASET, XERBLA
                    219: *     ..
                    220: *     .. Intrinsic Functions ..
                    221:       INTRINSIC          MAX, SIGN, SQRT
                    222: *     ..
                    223: *     .. Executable Statements ..
                    224: *
                    225: *     Test the input parameters.
                    226: *
                    227:       INFO = 0
                    228: *
                    229:       IF( K.LT.0 ) THEN
                    230:          INFO = -1
                    231:       ELSE IF( N.LT.K ) THEN
                    232:          INFO = -2
                    233:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
                    234:          INFO = -6
                    235:       END IF
                    236:       IF( INFO.NE.0 ) THEN
                    237:          CALL XERBLA( 'DLAED3', -INFO )
                    238:          RETURN
                    239:       END IF
                    240: *
                    241: *     Quick return if possible
                    242: *
                    243:       IF( K.EQ.0 )
                    244:      $   RETURN
                    245: *
                    246: *     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
                    247: *     be computed with high relative accuracy (barring over/underflow).
                    248: *     This is a problem on machines without a guard digit in
                    249: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
                    250: *     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
                    251: *     which on any of these machines zeros out the bottommost
                    252: *     bit of DLAMDA(I) if it is 1; this makes the subsequent
                    253: *     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
                    254: *     occurs. On binary machines with a guard digit (almost all
                    255: *     machines) it does not change DLAMDA(I) at all. On hexadecimal
                    256: *     and decimal machines with a guard digit, it slightly
                    257: *     changes the bottommost bits of DLAMDA(I). It does not account
                    258: *     for hexadecimal or decimal machines without guard digits
                    259: *     (we know of none). We use a subroutine call to compute
                    260: *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
                    261: *     this code.
                    262: *
                    263:       DO 10 I = 1, K
                    264:          DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
                    265:    10 CONTINUE
                    266: *
                    267:       DO 20 J = 1, K
                    268:          CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
                    269: *
                    270: *        If the zero finder fails, the computation is terminated.
                    271: *
                    272:          IF( INFO.NE.0 )
                    273:      $      GO TO 120
                    274:    20 CONTINUE
                    275: *
                    276:       IF( K.EQ.1 )
                    277:      $   GO TO 110
                    278:       IF( K.EQ.2 ) THEN
                    279:          DO 30 J = 1, K
                    280:             W( 1 ) = Q( 1, J )
                    281:             W( 2 ) = Q( 2, J )
                    282:             II = INDX( 1 )
                    283:             Q( 1, J ) = W( II )
                    284:             II = INDX( 2 )
                    285:             Q( 2, J ) = W( II )
                    286:    30    CONTINUE
                    287:          GO TO 110
                    288:       END IF
                    289: *
                    290: *     Compute updated W.
                    291: *
                    292:       CALL DCOPY( K, W, 1, S, 1 )
                    293: *
                    294: *     Initialize W(I) = Q(I,I)
                    295: *
                    296:       CALL DCOPY( K, Q, LDQ+1, W, 1 )
                    297:       DO 60 J = 1, K
                    298:          DO 40 I = 1, J - 1
                    299:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
                    300:    40    CONTINUE
                    301:          DO 50 I = J + 1, K
                    302:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
                    303:    50    CONTINUE
                    304:    60 CONTINUE
                    305:       DO 70 I = 1, K
                    306:          W( I ) = SIGN( SQRT( -W( I ) ), S( I ) )
                    307:    70 CONTINUE
                    308: *
                    309: *     Compute eigenvectors of the modified rank-1 modification.
                    310: *
                    311:       DO 100 J = 1, K
                    312:          DO 80 I = 1, K
                    313:             S( I ) = W( I ) / Q( I, J )
                    314:    80    CONTINUE
                    315:          TEMP = DNRM2( K, S, 1 )
                    316:          DO 90 I = 1, K
                    317:             II = INDX( I )
                    318:             Q( I, J ) = S( II ) / TEMP
                    319:    90    CONTINUE
                    320:   100 CONTINUE
                    321: *
                    322: *     Compute the updated eigenvectors.
                    323: *
                    324:   110 CONTINUE
                    325: *
                    326:       N2 = N - N1
                    327:       N12 = CTOT( 1 ) + CTOT( 2 )
                    328:       N23 = CTOT( 2 ) + CTOT( 3 )
                    329: *
                    330:       CALL DLACPY( 'A', N23, K, Q( CTOT( 1 )+1, 1 ), LDQ, S, N23 )
                    331:       IQ2 = N1*N12 + 1
                    332:       IF( N23.NE.0 ) THEN
                    333:          CALL DGEMM( 'N', 'N', N2, K, N23, ONE, Q2( IQ2 ), N2, S, N23,
                    334:      $               ZERO, Q( N1+1, 1 ), LDQ )
                    335:       ELSE
                    336:          CALL DLASET( 'A', N2, K, ZERO, ZERO, Q( N1+1, 1 ), LDQ )
                    337:       END IF
                    338: *
                    339:       CALL DLACPY( 'A', N12, K, Q, LDQ, S, N12 )
                    340:       IF( N12.NE.0 ) THEN
                    341:          CALL DGEMM( 'N', 'N', N1, K, N12, ONE, Q2, N1, S, N12, ZERO, Q,
                    342:      $               LDQ )
                    343:       ELSE
                    344:          CALL DLASET( 'A', N1, K, ZERO, ZERO, Q( 1, 1 ), LDQ )
                    345:       END IF
                    346: *
                    347: *
                    348:   120 CONTINUE
                    349:       RETURN
                    350: *
                    351: *     End of DLAED3
                    352: *
                    353:       END

CVSweb interface <joel.bertrand@systella.fr>