Annotation of rpl/lapack/lapack/dlaed3.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX,
        !             2:      $                   CTOT, W, S, INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            INFO, K, LDQ, N, N1
        !            11:       DOUBLE PRECISION   RHO
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            CTOT( * ), INDX( * )
        !            15:       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
        !            16:      $                   S( * ), W( * )
        !            17: *     ..
        !            18: *
        !            19: *  Purpose
        !            20: *  =======
        !            21: *
        !            22: *  DLAED3 finds the roots of the secular equation, as defined by the
        !            23: *  values in D, W, and RHO, between 1 and K.  It makes the
        !            24: *  appropriate calls to DLAED4 and then updates the eigenvectors by
        !            25: *  multiplying the matrix of eigenvectors of the pair of eigensystems
        !            26: *  being combined by the matrix of eigenvectors of the K-by-K system
        !            27: *  which is solved here.
        !            28: *
        !            29: *  This code makes very mild assumptions about floating point
        !            30: *  arithmetic. It will work on machines with a guard digit in
        !            31: *  add/subtract, or on those binary machines without guard digits
        !            32: *  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
        !            33: *  It could conceivably fail on hexadecimal or decimal machines
        !            34: *  without guard digits, but we know of none.
        !            35: *
        !            36: *  Arguments
        !            37: *  =========
        !            38: *
        !            39: *  K       (input) INTEGER
        !            40: *          The number of terms in the rational function to be solved by
        !            41: *          DLAED4.  K >= 0.
        !            42: *
        !            43: *  N       (input) INTEGER
        !            44: *          The number of rows and columns in the Q matrix.
        !            45: *          N >= K (deflation may result in N>K).
        !            46: *
        !            47: *  N1      (input) INTEGER
        !            48: *          The location of the last eigenvalue in the leading submatrix.
        !            49: *          min(1,N) <= N1 <= N/2.
        !            50: *
        !            51: *  D       (output) DOUBLE PRECISION array, dimension (N)
        !            52: *          D(I) contains the updated eigenvalues for
        !            53: *          1 <= I <= K.
        !            54: *
        !            55: *  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
        !            56: *          Initially the first K columns are used as workspace.
        !            57: *          On output the columns 1 to K contain
        !            58: *          the updated eigenvectors.
        !            59: *
        !            60: *  LDQ     (input) INTEGER
        !            61: *          The leading dimension of the array Q.  LDQ >= max(1,N).
        !            62: *
        !            63: *  RHO     (input) DOUBLE PRECISION
        !            64: *          The value of the parameter in the rank one update equation.
        !            65: *          RHO >= 0 required.
        !            66: *
        !            67: *  DLAMDA  (input/output) DOUBLE PRECISION array, dimension (K)
        !            68: *          The first K elements of this array contain the old roots
        !            69: *          of the deflated updating problem.  These are the poles
        !            70: *          of the secular equation. May be changed on output by
        !            71: *          having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
        !            72: *          Cray-2, or Cray C-90, as described above.
        !            73: *
        !            74: *  Q2      (input) DOUBLE PRECISION array, dimension (LDQ2, N)
        !            75: *          The first K columns of this matrix contain the non-deflated
        !            76: *          eigenvectors for the split problem.
        !            77: *
        !            78: *  INDX    (input) INTEGER array, dimension (N)
        !            79: *          The permutation used to arrange the columns of the deflated
        !            80: *          Q matrix into three groups (see DLAED2).
        !            81: *          The rows of the eigenvectors found by DLAED4 must be likewise
        !            82: *          permuted before the matrix multiply can take place.
        !            83: *
        !            84: *  CTOT    (input) INTEGER array, dimension (4)
        !            85: *          A count of the total number of the various types of columns
        !            86: *          in Q, as described in INDX.  The fourth column type is any
        !            87: *          column which has been deflated.
        !            88: *
        !            89: *  W       (input/output) DOUBLE PRECISION array, dimension (K)
        !            90: *          The first K elements of this array contain the components
        !            91: *          of the deflation-adjusted updating vector. Destroyed on
        !            92: *          output.
        !            93: *
        !            94: *  S       (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K
        !            95: *          Will contain the eigenvectors of the repaired matrix which
        !            96: *          will be multiplied by the previously accumulated eigenvectors
        !            97: *          to update the system.
        !            98: *
        !            99: *  LDS     (input) INTEGER
        !           100: *          The leading dimension of S.  LDS >= max(1,K).
        !           101: *
        !           102: *  INFO    (output) INTEGER
        !           103: *          = 0:  successful exit.
        !           104: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           105: *          > 0:  if INFO = 1, an eigenvalue did not converge
        !           106: *
        !           107: *  Further Details
        !           108: *  ===============
        !           109: *
        !           110: *  Based on contributions by
        !           111: *     Jeff Rutter, Computer Science Division, University of California
        !           112: *     at Berkeley, USA
        !           113: *  Modified by Francoise Tisseur, University of Tennessee.
        !           114: *
        !           115: *  =====================================================================
        !           116: *
        !           117: *     .. Parameters ..
        !           118:       DOUBLE PRECISION   ONE, ZERO
        !           119:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
        !           120: *     ..
        !           121: *     .. Local Scalars ..
        !           122:       INTEGER            I, II, IQ2, J, N12, N2, N23
        !           123:       DOUBLE PRECISION   TEMP
        !           124: *     ..
        !           125: *     .. External Functions ..
        !           126:       DOUBLE PRECISION   DLAMC3, DNRM2
        !           127:       EXTERNAL           DLAMC3, DNRM2
        !           128: *     ..
        !           129: *     .. External Subroutines ..
        !           130:       EXTERNAL           DCOPY, DGEMM, DLACPY, DLAED4, DLASET, XERBLA
        !           131: *     ..
        !           132: *     .. Intrinsic Functions ..
        !           133:       INTRINSIC          MAX, SIGN, SQRT
        !           134: *     ..
        !           135: *     .. Executable Statements ..
        !           136: *
        !           137: *     Test the input parameters.
        !           138: *
        !           139:       INFO = 0
        !           140: *
        !           141:       IF( K.LT.0 ) THEN
        !           142:          INFO = -1
        !           143:       ELSE IF( N.LT.K ) THEN
        !           144:          INFO = -2
        !           145:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
        !           146:          INFO = -6
        !           147:       END IF
        !           148:       IF( INFO.NE.0 ) THEN
        !           149:          CALL XERBLA( 'DLAED3', -INFO )
        !           150:          RETURN
        !           151:       END IF
        !           152: *
        !           153: *     Quick return if possible
        !           154: *
        !           155:       IF( K.EQ.0 )
        !           156:      $   RETURN
        !           157: *
        !           158: *     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
        !           159: *     be computed with high relative accuracy (barring over/underflow).
        !           160: *     This is a problem on machines without a guard digit in
        !           161: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
        !           162: *     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
        !           163: *     which on any of these machines zeros out the bottommost
        !           164: *     bit of DLAMDA(I) if it is 1; this makes the subsequent
        !           165: *     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
        !           166: *     occurs. On binary machines with a guard digit (almost all
        !           167: *     machines) it does not change DLAMDA(I) at all. On hexadecimal
        !           168: *     and decimal machines with a guard digit, it slightly
        !           169: *     changes the bottommost bits of DLAMDA(I). It does not account
        !           170: *     for hexadecimal or decimal machines without guard digits
        !           171: *     (we know of none). We use a subroutine call to compute
        !           172: *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
        !           173: *     this code.
        !           174: *
        !           175:       DO 10 I = 1, K
        !           176:          DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
        !           177:    10 CONTINUE
        !           178: *
        !           179:       DO 20 J = 1, K
        !           180:          CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
        !           181: *
        !           182: *        If the zero finder fails, the computation is terminated.
        !           183: *
        !           184:          IF( INFO.NE.0 )
        !           185:      $      GO TO 120
        !           186:    20 CONTINUE
        !           187: *
        !           188:       IF( K.EQ.1 )
        !           189:      $   GO TO 110
        !           190:       IF( K.EQ.2 ) THEN
        !           191:          DO 30 J = 1, K
        !           192:             W( 1 ) = Q( 1, J )
        !           193:             W( 2 ) = Q( 2, J )
        !           194:             II = INDX( 1 )
        !           195:             Q( 1, J ) = W( II )
        !           196:             II = INDX( 2 )
        !           197:             Q( 2, J ) = W( II )
        !           198:    30    CONTINUE
        !           199:          GO TO 110
        !           200:       END IF
        !           201: *
        !           202: *     Compute updated W.
        !           203: *
        !           204:       CALL DCOPY( K, W, 1, S, 1 )
        !           205: *
        !           206: *     Initialize W(I) = Q(I,I)
        !           207: *
        !           208:       CALL DCOPY( K, Q, LDQ+1, W, 1 )
        !           209:       DO 60 J = 1, K
        !           210:          DO 40 I = 1, J - 1
        !           211:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
        !           212:    40    CONTINUE
        !           213:          DO 50 I = J + 1, K
        !           214:             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
        !           215:    50    CONTINUE
        !           216:    60 CONTINUE
        !           217:       DO 70 I = 1, K
        !           218:          W( I ) = SIGN( SQRT( -W( I ) ), S( I ) )
        !           219:    70 CONTINUE
        !           220: *
        !           221: *     Compute eigenvectors of the modified rank-1 modification.
        !           222: *
        !           223:       DO 100 J = 1, K
        !           224:          DO 80 I = 1, K
        !           225:             S( I ) = W( I ) / Q( I, J )
        !           226:    80    CONTINUE
        !           227:          TEMP = DNRM2( K, S, 1 )
        !           228:          DO 90 I = 1, K
        !           229:             II = INDX( I )
        !           230:             Q( I, J ) = S( II ) / TEMP
        !           231:    90    CONTINUE
        !           232:   100 CONTINUE
        !           233: *
        !           234: *     Compute the updated eigenvectors.
        !           235: *
        !           236:   110 CONTINUE
        !           237: *
        !           238:       N2 = N - N1
        !           239:       N12 = CTOT( 1 ) + CTOT( 2 )
        !           240:       N23 = CTOT( 2 ) + CTOT( 3 )
        !           241: *
        !           242:       CALL DLACPY( 'A', N23, K, Q( CTOT( 1 )+1, 1 ), LDQ, S, N23 )
        !           243:       IQ2 = N1*N12 + 1
        !           244:       IF( N23.NE.0 ) THEN
        !           245:          CALL DGEMM( 'N', 'N', N2, K, N23, ONE, Q2( IQ2 ), N2, S, N23,
        !           246:      $               ZERO, Q( N1+1, 1 ), LDQ )
        !           247:       ELSE
        !           248:          CALL DLASET( 'A', N2, K, ZERO, ZERO, Q( N1+1, 1 ), LDQ )
        !           249:       END IF
        !           250: *
        !           251:       CALL DLACPY( 'A', N12, K, Q, LDQ, S, N12 )
        !           252:       IF( N12.NE.0 ) THEN
        !           253:          CALL DGEMM( 'N', 'N', N1, K, N12, ONE, Q2, N1, S, N12, ZERO, Q,
        !           254:      $               LDQ )
        !           255:       ELSE
        !           256:          CALL DLASET( 'A', N1, K, ZERO, ZERO, Q( 1, 1 ), LDQ )
        !           257:       END IF
        !           258: *
        !           259: *
        !           260:   120 CONTINUE
        !           261:       RETURN
        !           262: *
        !           263: *     End of DLAED3
        !           264: *
        !           265:       END

CVSweb interface <joel.bertrand@systella.fr>