File:  [local] / rpl / lapack / lapack / dlaed2.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:28:39 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W,
    2:      $                   Q2, INDX, INDXC, INDXP, COLTYP, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       INTEGER            INFO, K, LDQ, N, N1
   11:       DOUBLE PRECISION   RHO
   12: *     ..
   13: *     .. Array Arguments ..
   14:       INTEGER            COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
   15:      $                   INDXQ( * )
   16:       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
   17:      $                   W( * ), Z( * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  DLAED2 merges the two sets of eigenvalues together into a single
   24: *  sorted set.  Then it tries to deflate the size of the problem.
   25: *  There are two ways in which deflation can occur:  when two or more
   26: *  eigenvalues are close together or if there is a tiny entry in the
   27: *  Z vector.  For each such occurrence the order of the related secular
   28: *  equation problem is reduced by one.
   29: *
   30: *  Arguments
   31: *  =========
   32: *
   33: *  K      (output) INTEGER
   34: *         The number of non-deflated eigenvalues, and the order of the
   35: *         related secular equation. 0 <= K <=N.
   36: *
   37: *  N      (input) INTEGER
   38: *         The dimension of the symmetric tridiagonal matrix.  N >= 0.
   39: *
   40: *  N1     (input) INTEGER
   41: *         The location of the last eigenvalue in the leading sub-matrix.
   42: *         min(1,N) <= N1 <= N/2.
   43: *
   44: *  D      (input/output) DOUBLE PRECISION array, dimension (N)
   45: *         On entry, D contains the eigenvalues of the two submatrices to
   46: *         be combined.
   47: *         On exit, D contains the trailing (N-K) updated eigenvalues
   48: *         (those which were deflated) sorted into increasing order.
   49: *
   50: *  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
   51: *         On entry, Q contains the eigenvectors of two submatrices in
   52: *         the two square blocks with corners at (1,1), (N1,N1)
   53: *         and (N1+1, N1+1), (N,N).
   54: *         On exit, Q contains the trailing (N-K) updated eigenvectors
   55: *         (those which were deflated) in its last N-K columns.
   56: *
   57: *  LDQ    (input) INTEGER
   58: *         The leading dimension of the array Q.  LDQ >= max(1,N).
   59: *
   60: *  INDXQ  (input/output) INTEGER array, dimension (N)
   61: *         The permutation which separately sorts the two sub-problems
   62: *         in D into ascending order.  Note that elements in the second
   63: *         half of this permutation must first have N1 added to their
   64: *         values. Destroyed on exit.
   65: *
   66: *  RHO    (input/output) DOUBLE PRECISION
   67: *         On entry, the off-diagonal element associated with the rank-1
   68: *         cut which originally split the two submatrices which are now
   69: *         being recombined.
   70: *         On exit, RHO has been modified to the value required by
   71: *         DLAED3.
   72: *
   73: *  Z      (input) DOUBLE PRECISION array, dimension (N)
   74: *         On entry, Z contains the updating vector (the last
   75: *         row of the first sub-eigenvector matrix and the first row of
   76: *         the second sub-eigenvector matrix).
   77: *         On exit, the contents of Z have been destroyed by the updating
   78: *         process.
   79: *
   80: *  DLAMDA (output) DOUBLE PRECISION array, dimension (N)
   81: *         A copy of the first K eigenvalues which will be used by
   82: *         DLAED3 to form the secular equation.
   83: *
   84: *  W      (output) DOUBLE PRECISION array, dimension (N)
   85: *         The first k values of the final deflation-altered z-vector
   86: *         which will be passed to DLAED3.
   87: *
   88: *  Q2     (output) DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2)
   89: *         A copy of the first K eigenvectors which will be used by
   90: *         DLAED3 in a matrix multiply (DGEMM) to solve for the new
   91: *         eigenvectors.
   92: *
   93: *  INDX   (workspace) INTEGER array, dimension (N)
   94: *         The permutation used to sort the contents of DLAMDA into
   95: *         ascending order.
   96: *
   97: *  INDXC  (output) INTEGER array, dimension (N)
   98: *         The permutation used to arrange the columns of the deflated
   99: *         Q matrix into three groups:  the first group contains non-zero
  100: *         elements only at and above N1, the second contains
  101: *         non-zero elements only below N1, and the third is dense.
  102: *
  103: *  INDXP  (workspace) INTEGER array, dimension (N)
  104: *         The permutation used to place deflated values of D at the end
  105: *         of the array.  INDXP(1:K) points to the nondeflated D-values
  106: *         and INDXP(K+1:N) points to the deflated eigenvalues.
  107: *
  108: *  COLTYP (workspace/output) INTEGER array, dimension (N)
  109: *         During execution, a label which will indicate which of the
  110: *         following types a column in the Q2 matrix is:
  111: *         1 : non-zero in the upper half only;
  112: *         2 : dense;
  113: *         3 : non-zero in the lower half only;
  114: *         4 : deflated.
  115: *         On exit, COLTYP(i) is the number of columns of type i,
  116: *         for i=1 to 4 only.
  117: *
  118: *  INFO   (output) INTEGER
  119: *          = 0:  successful exit.
  120: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  121: *
  122: *  Further Details
  123: *  ===============
  124: *
  125: *  Based on contributions by
  126: *     Jeff Rutter, Computer Science Division, University of California
  127: *     at Berkeley, USA
  128: *  Modified by Francoise Tisseur, University of Tennessee.
  129: *
  130: *  =====================================================================
  131: *
  132: *     .. Parameters ..
  133:       DOUBLE PRECISION   MONE, ZERO, ONE, TWO, EIGHT
  134:       PARAMETER          ( MONE = -1.0D0, ZERO = 0.0D0, ONE = 1.0D0,
  135:      $                   TWO = 2.0D0, EIGHT = 8.0D0 )
  136: *     ..
  137: *     .. Local Arrays ..
  138:       INTEGER            CTOT( 4 ), PSM( 4 )
  139: *     ..
  140: *     .. Local Scalars ..
  141:       INTEGER            CT, I, IMAX, IQ1, IQ2, J, JMAX, JS, K2, N1P1,
  142:      $                   N2, NJ, PJ
  143:       DOUBLE PRECISION   C, EPS, S, T, TAU, TOL
  144: *     ..
  145: *     .. External Functions ..
  146:       INTEGER            IDAMAX
  147:       DOUBLE PRECISION   DLAMCH, DLAPY2
  148:       EXTERNAL           IDAMAX, DLAMCH, DLAPY2
  149: *     ..
  150: *     .. External Subroutines ..
  151:       EXTERNAL           DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA
  152: *     ..
  153: *     .. Intrinsic Functions ..
  154:       INTRINSIC          ABS, MAX, MIN, SQRT
  155: *     ..
  156: *     .. Executable Statements ..
  157: *
  158: *     Test the input parameters.
  159: *
  160:       INFO = 0
  161: *
  162:       IF( N.LT.0 ) THEN
  163:          INFO = -2
  164:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
  165:          INFO = -6
  166:       ELSE IF( MIN( 1, ( N / 2 ) ).GT.N1 .OR. ( N / 2 ).LT.N1 ) THEN
  167:          INFO = -3
  168:       END IF
  169:       IF( INFO.NE.0 ) THEN
  170:          CALL XERBLA( 'DLAED2', -INFO )
  171:          RETURN
  172:       END IF
  173: *
  174: *     Quick return if possible
  175: *
  176:       IF( N.EQ.0 )
  177:      $   RETURN
  178: *
  179:       N2 = N - N1
  180:       N1P1 = N1 + 1
  181: *
  182:       IF( RHO.LT.ZERO ) THEN
  183:          CALL DSCAL( N2, MONE, Z( N1P1 ), 1 )
  184:       END IF
  185: *
  186: *     Normalize z so that norm(z) = 1.  Since z is the concatenation of
  187: *     two normalized vectors, norm2(z) = sqrt(2).
  188: *
  189:       T = ONE / SQRT( TWO )
  190:       CALL DSCAL( N, T, Z, 1 )
  191: *
  192: *     RHO = ABS( norm(z)**2 * RHO )
  193: *
  194:       RHO = ABS( TWO*RHO )
  195: *
  196: *     Sort the eigenvalues into increasing order
  197: *
  198:       DO 10 I = N1P1, N
  199:          INDXQ( I ) = INDXQ( I ) + N1
  200:    10 CONTINUE
  201: *
  202: *     re-integrate the deflated parts from the last pass
  203: *
  204:       DO 20 I = 1, N
  205:          DLAMDA( I ) = D( INDXQ( I ) )
  206:    20 CONTINUE
  207:       CALL DLAMRG( N1, N2, DLAMDA, 1, 1, INDXC )
  208:       DO 30 I = 1, N
  209:          INDX( I ) = INDXQ( INDXC( I ) )
  210:    30 CONTINUE
  211: *
  212: *     Calculate the allowable deflation tolerance
  213: *
  214:       IMAX = IDAMAX( N, Z, 1 )
  215:       JMAX = IDAMAX( N, D, 1 )
  216:       EPS = DLAMCH( 'Epsilon' )
  217:       TOL = EIGHT*EPS*MAX( ABS( D( JMAX ) ), ABS( Z( IMAX ) ) )
  218: *
  219: *     If the rank-1 modifier is small enough, no more needs to be done
  220: *     except to reorganize Q so that its columns correspond with the
  221: *     elements in D.
  222: *
  223:       IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
  224:          K = 0
  225:          IQ2 = 1
  226:          DO 40 J = 1, N
  227:             I = INDX( J )
  228:             CALL DCOPY( N, Q( 1, I ), 1, Q2( IQ2 ), 1 )
  229:             DLAMDA( J ) = D( I )
  230:             IQ2 = IQ2 + N
  231:    40    CONTINUE
  232:          CALL DLACPY( 'A', N, N, Q2, N, Q, LDQ )
  233:          CALL DCOPY( N, DLAMDA, 1, D, 1 )
  234:          GO TO 190
  235:       END IF
  236: *
  237: *     If there are multiple eigenvalues then the problem deflates.  Here
  238: *     the number of equal eigenvalues are found.  As each equal
  239: *     eigenvalue is found, an elementary reflector is computed to rotate
  240: *     the corresponding eigensubspace so that the corresponding
  241: *     components of Z are zero in this new basis.
  242: *
  243:       DO 50 I = 1, N1
  244:          COLTYP( I ) = 1
  245:    50 CONTINUE
  246:       DO 60 I = N1P1, N
  247:          COLTYP( I ) = 3
  248:    60 CONTINUE
  249: *
  250: *
  251:       K = 0
  252:       K2 = N + 1
  253:       DO 70 J = 1, N
  254:          NJ = INDX( J )
  255:          IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
  256: *
  257: *           Deflate due to small z component.
  258: *
  259:             K2 = K2 - 1
  260:             COLTYP( NJ ) = 4
  261:             INDXP( K2 ) = NJ
  262:             IF( J.EQ.N )
  263:      $         GO TO 100
  264:          ELSE
  265:             PJ = NJ
  266:             GO TO 80
  267:          END IF
  268:    70 CONTINUE
  269:    80 CONTINUE
  270:       J = J + 1
  271:       NJ = INDX( J )
  272:       IF( J.GT.N )
  273:      $   GO TO 100
  274:       IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
  275: *
  276: *        Deflate due to small z component.
  277: *
  278:          K2 = K2 - 1
  279:          COLTYP( NJ ) = 4
  280:          INDXP( K2 ) = NJ
  281:       ELSE
  282: *
  283: *        Check if eigenvalues are close enough to allow deflation.
  284: *
  285:          S = Z( PJ )
  286:          C = Z( NJ )
  287: *
  288: *        Find sqrt(a**2+b**2) without overflow or
  289: *        destructive underflow.
  290: *
  291:          TAU = DLAPY2( C, S )
  292:          T = D( NJ ) - D( PJ )
  293:          C = C / TAU
  294:          S = -S / TAU
  295:          IF( ABS( T*C*S ).LE.TOL ) THEN
  296: *
  297: *           Deflation is possible.
  298: *
  299:             Z( NJ ) = TAU
  300:             Z( PJ ) = ZERO
  301:             IF( COLTYP( NJ ).NE.COLTYP( PJ ) )
  302:      $         COLTYP( NJ ) = 2
  303:             COLTYP( PJ ) = 4
  304:             CALL DROT( N, Q( 1, PJ ), 1, Q( 1, NJ ), 1, C, S )
  305:             T = D( PJ )*C**2 + D( NJ )*S**2
  306:             D( NJ ) = D( PJ )*S**2 + D( NJ )*C**2
  307:             D( PJ ) = T
  308:             K2 = K2 - 1
  309:             I = 1
  310:    90       CONTINUE
  311:             IF( K2+I.LE.N ) THEN
  312:                IF( D( PJ ).LT.D( INDXP( K2+I ) ) ) THEN
  313:                   INDXP( K2+I-1 ) = INDXP( K2+I )
  314:                   INDXP( K2+I ) = PJ
  315:                   I = I + 1
  316:                   GO TO 90
  317:                ELSE
  318:                   INDXP( K2+I-1 ) = PJ
  319:                END IF
  320:             ELSE
  321:                INDXP( K2+I-1 ) = PJ
  322:             END IF
  323:             PJ = NJ
  324:          ELSE
  325:             K = K + 1
  326:             DLAMDA( K ) = D( PJ )
  327:             W( K ) = Z( PJ )
  328:             INDXP( K ) = PJ
  329:             PJ = NJ
  330:          END IF
  331:       END IF
  332:       GO TO 80
  333:   100 CONTINUE
  334: *
  335: *     Record the last eigenvalue.
  336: *
  337:       K = K + 1
  338:       DLAMDA( K ) = D( PJ )
  339:       W( K ) = Z( PJ )
  340:       INDXP( K ) = PJ
  341: *
  342: *     Count up the total number of the various types of columns, then
  343: *     form a permutation which positions the four column types into
  344: *     four uniform groups (although one or more of these groups may be
  345: *     empty).
  346: *
  347:       DO 110 J = 1, 4
  348:          CTOT( J ) = 0
  349:   110 CONTINUE
  350:       DO 120 J = 1, N
  351:          CT = COLTYP( J )
  352:          CTOT( CT ) = CTOT( CT ) + 1
  353:   120 CONTINUE
  354: *
  355: *     PSM(*) = Position in SubMatrix (of types 1 through 4)
  356: *
  357:       PSM( 1 ) = 1
  358:       PSM( 2 ) = 1 + CTOT( 1 )
  359:       PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
  360:       PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
  361:       K = N - CTOT( 4 )
  362: *
  363: *     Fill out the INDXC array so that the permutation which it induces
  364: *     will place all type-1 columns first, all type-2 columns next,
  365: *     then all type-3's, and finally all type-4's.
  366: *
  367:       DO 130 J = 1, N
  368:          JS = INDXP( J )
  369:          CT = COLTYP( JS )
  370:          INDX( PSM( CT ) ) = JS
  371:          INDXC( PSM( CT ) ) = J
  372:          PSM( CT ) = PSM( CT ) + 1
  373:   130 CONTINUE
  374: *
  375: *     Sort the eigenvalues and corresponding eigenvectors into DLAMDA
  376: *     and Q2 respectively.  The eigenvalues/vectors which were not
  377: *     deflated go into the first K slots of DLAMDA and Q2 respectively,
  378: *     while those which were deflated go into the last N - K slots.
  379: *
  380:       I = 1
  381:       IQ1 = 1
  382:       IQ2 = 1 + ( CTOT( 1 )+CTOT( 2 ) )*N1
  383:       DO 140 J = 1, CTOT( 1 )
  384:          JS = INDX( I )
  385:          CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
  386:          Z( I ) = D( JS )
  387:          I = I + 1
  388:          IQ1 = IQ1 + N1
  389:   140 CONTINUE
  390: *
  391:       DO 150 J = 1, CTOT( 2 )
  392:          JS = INDX( I )
  393:          CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
  394:          CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
  395:          Z( I ) = D( JS )
  396:          I = I + 1
  397:          IQ1 = IQ1 + N1
  398:          IQ2 = IQ2 + N2
  399:   150 CONTINUE
  400: *
  401:       DO 160 J = 1, CTOT( 3 )
  402:          JS = INDX( I )
  403:          CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
  404:          Z( I ) = D( JS )
  405:          I = I + 1
  406:          IQ2 = IQ2 + N2
  407:   160 CONTINUE
  408: *
  409:       IQ1 = IQ2
  410:       DO 170 J = 1, CTOT( 4 )
  411:          JS = INDX( I )
  412:          CALL DCOPY( N, Q( 1, JS ), 1, Q2( IQ2 ), 1 )
  413:          IQ2 = IQ2 + N
  414:          Z( I ) = D( JS )
  415:          I = I + 1
  416:   170 CONTINUE
  417: *
  418: *     The deflated eigenvalues and their corresponding vectors go back
  419: *     into the last N - K slots of D and Q respectively.
  420: *
  421:       CALL DLACPY( 'A', N, CTOT( 4 ), Q2( IQ1 ), N, Q( 1, K+1 ), LDQ )
  422:       CALL DCOPY( N-K, Z( K+1 ), 1, D( K+1 ), 1 )
  423: *
  424: *     Copy CTOT into COLTYP for referencing in DLAED3.
  425: *
  426:       DO 180 J = 1, 4
  427:          COLTYP( J ) = CTOT( J )
  428:   180 CONTINUE
  429: *
  430:   190 CONTINUE
  431:       RETURN
  432: *
  433: *     End of DLAED2
  434: *
  435:       END

CVSweb interface <joel.bertrand@systella.fr>