File:  [local] / rpl / lapack / lapack / dlaed2.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:53 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLAED2 used by DSTEDC. Merges eigenvalues and deflates secular equation. Used when the original matrix is tridiagonal.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLAED2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W,
   22: *                          Q2, INDX, INDXC, INDXP, COLTYP, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, K, LDQ, N, N1
   26: *       DOUBLE PRECISION   RHO
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
   30: *      $                   INDXQ( * )
   31: *       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
   32: *      $                   W( * ), Z( * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> DLAED2 merges the two sets of eigenvalues together into a single
   42: *> sorted set.  Then it tries to deflate the size of the problem.
   43: *> There are two ways in which deflation can occur:  when two or more
   44: *> eigenvalues are close together or if there is a tiny entry in the
   45: *> Z vector.  For each such occurrence the order of the related secular
   46: *> equation problem is reduced by one.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[out] K
   53: *> \verbatim
   54: *>          K is INTEGER
   55: *>         The number of non-deflated eigenvalues, and the order of the
   56: *>         related secular equation. 0 <= K <=N.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] N
   60: *> \verbatim
   61: *>          N is INTEGER
   62: *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N1
   66: *> \verbatim
   67: *>          N1 is INTEGER
   68: *>         The location of the last eigenvalue in the leading sub-matrix.
   69: *>         min(1,N) <= N1 <= N/2.
   70: *> \endverbatim
   71: *>
   72: *> \param[in,out] D
   73: *> \verbatim
   74: *>          D is DOUBLE PRECISION array, dimension (N)
   75: *>         On entry, D contains the eigenvalues of the two submatrices to
   76: *>         be combined.
   77: *>         On exit, D contains the trailing (N-K) updated eigenvalues
   78: *>         (those which were deflated) sorted into increasing order.
   79: *> \endverbatim
   80: *>
   81: *> \param[in,out] Q
   82: *> \verbatim
   83: *>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
   84: *>         On entry, Q contains the eigenvectors of two submatrices in
   85: *>         the two square blocks with corners at (1,1), (N1,N1)
   86: *>         and (N1+1, N1+1), (N,N).
   87: *>         On exit, Q contains the trailing (N-K) updated eigenvectors
   88: *>         (those which were deflated) in its last N-K columns.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] LDQ
   92: *> \verbatim
   93: *>          LDQ is INTEGER
   94: *>         The leading dimension of the array Q.  LDQ >= max(1,N).
   95: *> \endverbatim
   96: *>
   97: *> \param[in,out] INDXQ
   98: *> \verbatim
   99: *>          INDXQ is INTEGER array, dimension (N)
  100: *>         The permutation which separately sorts the two sub-problems
  101: *>         in D into ascending order.  Note that elements in the second
  102: *>         half of this permutation must first have N1 added to their
  103: *>         values. Destroyed on exit.
  104: *> \endverbatim
  105: *>
  106: *> \param[in,out] RHO
  107: *> \verbatim
  108: *>          RHO is DOUBLE PRECISION
  109: *>         On entry, the off-diagonal element associated with the rank-1
  110: *>         cut which originally split the two submatrices which are now
  111: *>         being recombined.
  112: *>         On exit, RHO has been modified to the value required by
  113: *>         DLAED3.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] Z
  117: *> \verbatim
  118: *>          Z is DOUBLE PRECISION array, dimension (N)
  119: *>         On entry, Z contains the updating vector (the last
  120: *>         row of the first sub-eigenvector matrix and the first row of
  121: *>         the second sub-eigenvector matrix).
  122: *>         On exit, the contents of Z have been destroyed by the updating
  123: *>         process.
  124: *> \endverbatim
  125: *>
  126: *> \param[out] DLAMDA
  127: *> \verbatim
  128: *>          DLAMDA is DOUBLE PRECISION array, dimension (N)
  129: *>         A copy of the first K eigenvalues which will be used by
  130: *>         DLAED3 to form the secular equation.
  131: *> \endverbatim
  132: *>
  133: *> \param[out] W
  134: *> \verbatim
  135: *>          W is DOUBLE PRECISION array, dimension (N)
  136: *>         The first k values of the final deflation-altered z-vector
  137: *>         which will be passed to DLAED3.
  138: *> \endverbatim
  139: *>
  140: *> \param[out] Q2
  141: *> \verbatim
  142: *>          Q2 is DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2)
  143: *>         A copy of the first K eigenvectors which will be used by
  144: *>         DLAED3 in a matrix multiply (DGEMM) to solve for the new
  145: *>         eigenvectors.
  146: *> \endverbatim
  147: *>
  148: *> \param[out] INDX
  149: *> \verbatim
  150: *>          INDX is INTEGER array, dimension (N)
  151: *>         The permutation used to sort the contents of DLAMDA into
  152: *>         ascending order.
  153: *> \endverbatim
  154: *>
  155: *> \param[out] INDXC
  156: *> \verbatim
  157: *>          INDXC is INTEGER array, dimension (N)
  158: *>         The permutation used to arrange the columns of the deflated
  159: *>         Q matrix into three groups:  the first group contains non-zero
  160: *>         elements only at and above N1, the second contains
  161: *>         non-zero elements only below N1, and the third is dense.
  162: *> \endverbatim
  163: *>
  164: *> \param[out] INDXP
  165: *> \verbatim
  166: *>          INDXP is INTEGER array, dimension (N)
  167: *>         The permutation used to place deflated values of D at the end
  168: *>         of the array.  INDXP(1:K) points to the nondeflated D-values
  169: *>         and INDXP(K+1:N) points to the deflated eigenvalues.
  170: *> \endverbatim
  171: *>
  172: *> \param[out] COLTYP
  173: *> \verbatim
  174: *>          COLTYP is INTEGER array, dimension (N)
  175: *>         During execution, a label which will indicate which of the
  176: *>         following types a column in the Q2 matrix is:
  177: *>         1 : non-zero in the upper half only;
  178: *>         2 : dense;
  179: *>         3 : non-zero in the lower half only;
  180: *>         4 : deflated.
  181: *>         On exit, COLTYP(i) is the number of columns of type i,
  182: *>         for i=1 to 4 only.
  183: *> \endverbatim
  184: *>
  185: *> \param[out] INFO
  186: *> \verbatim
  187: *>          INFO is INTEGER
  188: *>          = 0:  successful exit.
  189: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  190: *> \endverbatim
  191: *
  192: *  Authors:
  193: *  ========
  194: *
  195: *> \author Univ. of Tennessee
  196: *> \author Univ. of California Berkeley
  197: *> \author Univ. of Colorado Denver
  198: *> \author NAG Ltd.
  199: *
  200: *> \ingroup auxOTHERcomputational
  201: *
  202: *> \par Contributors:
  203: *  ==================
  204: *>
  205: *> Jeff Rutter, Computer Science Division, University of California
  206: *> at Berkeley, USA \n
  207: *>  Modified by Francoise Tisseur, University of Tennessee
  208: *>
  209: *  =====================================================================
  210:       SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W,
  211:      $                   Q2, INDX, INDXC, INDXP, COLTYP, INFO )
  212: *
  213: *  -- LAPACK computational routine --
  214: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  215: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  216: *
  217: *     .. Scalar Arguments ..
  218:       INTEGER            INFO, K, LDQ, N, N1
  219:       DOUBLE PRECISION   RHO
  220: *     ..
  221: *     .. Array Arguments ..
  222:       INTEGER            COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
  223:      $                   INDXQ( * )
  224:       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
  225:      $                   W( * ), Z( * )
  226: *     ..
  227: *
  228: *  =====================================================================
  229: *
  230: *     .. Parameters ..
  231:       DOUBLE PRECISION   MONE, ZERO, ONE, TWO, EIGHT
  232:       PARAMETER          ( MONE = -1.0D0, ZERO = 0.0D0, ONE = 1.0D0,
  233:      $                   TWO = 2.0D0, EIGHT = 8.0D0 )
  234: *     ..
  235: *     .. Local Arrays ..
  236:       INTEGER            CTOT( 4 ), PSM( 4 )
  237: *     ..
  238: *     .. Local Scalars ..
  239:       INTEGER            CT, I, IMAX, IQ1, IQ2, J, JMAX, JS, K2, N1P1,
  240:      $                   N2, NJ, PJ
  241:       DOUBLE PRECISION   C, EPS, S, T, TAU, TOL
  242: *     ..
  243: *     .. External Functions ..
  244:       INTEGER            IDAMAX
  245:       DOUBLE PRECISION   DLAMCH, DLAPY2
  246:       EXTERNAL           IDAMAX, DLAMCH, DLAPY2
  247: *     ..
  248: *     .. External Subroutines ..
  249:       EXTERNAL           DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA
  250: *     ..
  251: *     .. Intrinsic Functions ..
  252:       INTRINSIC          ABS, MAX, MIN, SQRT
  253: *     ..
  254: *     .. Executable Statements ..
  255: *
  256: *     Test the input parameters.
  257: *
  258:       INFO = 0
  259: *
  260:       IF( N.LT.0 ) THEN
  261:          INFO = -2
  262:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
  263:          INFO = -6
  264:       ELSE IF( MIN( 1, ( N / 2 ) ).GT.N1 .OR. ( N / 2 ).LT.N1 ) THEN
  265:          INFO = -3
  266:       END IF
  267:       IF( INFO.NE.0 ) THEN
  268:          CALL XERBLA( 'DLAED2', -INFO )
  269:          RETURN
  270:       END IF
  271: *
  272: *     Quick return if possible
  273: *
  274:       IF( N.EQ.0 )
  275:      $   RETURN
  276: *
  277:       N2 = N - N1
  278:       N1P1 = N1 + 1
  279: *
  280:       IF( RHO.LT.ZERO ) THEN
  281:          CALL DSCAL( N2, MONE, Z( N1P1 ), 1 )
  282:       END IF
  283: *
  284: *     Normalize z so that norm(z) = 1.  Since z is the concatenation of
  285: *     two normalized vectors, norm2(z) = sqrt(2).
  286: *
  287:       T = ONE / SQRT( TWO )
  288:       CALL DSCAL( N, T, Z, 1 )
  289: *
  290: *     RHO = ABS( norm(z)**2 * RHO )
  291: *
  292:       RHO = ABS( TWO*RHO )
  293: *
  294: *     Sort the eigenvalues into increasing order
  295: *
  296:       DO 10 I = N1P1, N
  297:          INDXQ( I ) = INDXQ( I ) + N1
  298:    10 CONTINUE
  299: *
  300: *     re-integrate the deflated parts from the last pass
  301: *
  302:       DO 20 I = 1, N
  303:          DLAMDA( I ) = D( INDXQ( I ) )
  304:    20 CONTINUE
  305:       CALL DLAMRG( N1, N2, DLAMDA, 1, 1, INDXC )
  306:       DO 30 I = 1, N
  307:          INDX( I ) = INDXQ( INDXC( I ) )
  308:    30 CONTINUE
  309: *
  310: *     Calculate the allowable deflation tolerance
  311: *
  312:       IMAX = IDAMAX( N, Z, 1 )
  313:       JMAX = IDAMAX( N, D, 1 )
  314:       EPS = DLAMCH( 'Epsilon' )
  315:       TOL = EIGHT*EPS*MAX( ABS( D( JMAX ) ), ABS( Z( IMAX ) ) )
  316: *
  317: *     If the rank-1 modifier is small enough, no more needs to be done
  318: *     except to reorganize Q so that its columns correspond with the
  319: *     elements in D.
  320: *
  321:       IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
  322:          K = 0
  323:          IQ2 = 1
  324:          DO 40 J = 1, N
  325:             I = INDX( J )
  326:             CALL DCOPY( N, Q( 1, I ), 1, Q2( IQ2 ), 1 )
  327:             DLAMDA( J ) = D( I )
  328:             IQ2 = IQ2 + N
  329:    40    CONTINUE
  330:          CALL DLACPY( 'A', N, N, Q2, N, Q, LDQ )
  331:          CALL DCOPY( N, DLAMDA, 1, D, 1 )
  332:          GO TO 190
  333:       END IF
  334: *
  335: *     If there are multiple eigenvalues then the problem deflates.  Here
  336: *     the number of equal eigenvalues are found.  As each equal
  337: *     eigenvalue is found, an elementary reflector is computed to rotate
  338: *     the corresponding eigensubspace so that the corresponding
  339: *     components of Z are zero in this new basis.
  340: *
  341:       DO 50 I = 1, N1
  342:          COLTYP( I ) = 1
  343:    50 CONTINUE
  344:       DO 60 I = N1P1, N
  345:          COLTYP( I ) = 3
  346:    60 CONTINUE
  347: *
  348: *
  349:       K = 0
  350:       K2 = N + 1
  351:       DO 70 J = 1, N
  352:          NJ = INDX( J )
  353:          IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
  354: *
  355: *           Deflate due to small z component.
  356: *
  357:             K2 = K2 - 1
  358:             COLTYP( NJ ) = 4
  359:             INDXP( K2 ) = NJ
  360:             IF( J.EQ.N )
  361:      $         GO TO 100
  362:          ELSE
  363:             PJ = NJ
  364:             GO TO 80
  365:          END IF
  366:    70 CONTINUE
  367:    80 CONTINUE
  368:       J = J + 1
  369:       NJ = INDX( J )
  370:       IF( J.GT.N )
  371:      $   GO TO 100
  372:       IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
  373: *
  374: *        Deflate due to small z component.
  375: *
  376:          K2 = K2 - 1
  377:          COLTYP( NJ ) = 4
  378:          INDXP( K2 ) = NJ
  379:       ELSE
  380: *
  381: *        Check if eigenvalues are close enough to allow deflation.
  382: *
  383:          S = Z( PJ )
  384:          C = Z( NJ )
  385: *
  386: *        Find sqrt(a**2+b**2) without overflow or
  387: *        destructive underflow.
  388: *
  389:          TAU = DLAPY2( C, S )
  390:          T = D( NJ ) - D( PJ )
  391:          C = C / TAU
  392:          S = -S / TAU
  393:          IF( ABS( T*C*S ).LE.TOL ) THEN
  394: *
  395: *           Deflation is possible.
  396: *
  397:             Z( NJ ) = TAU
  398:             Z( PJ ) = ZERO
  399:             IF( COLTYP( NJ ).NE.COLTYP( PJ ) )
  400:      $         COLTYP( NJ ) = 2
  401:             COLTYP( PJ ) = 4
  402:             CALL DROT( N, Q( 1, PJ ), 1, Q( 1, NJ ), 1, C, S )
  403:             T = D( PJ )*C**2 + D( NJ )*S**2
  404:             D( NJ ) = D( PJ )*S**2 + D( NJ )*C**2
  405:             D( PJ ) = T
  406:             K2 = K2 - 1
  407:             I = 1
  408:    90       CONTINUE
  409:             IF( K2+I.LE.N ) THEN
  410:                IF( D( PJ ).LT.D( INDXP( K2+I ) ) ) THEN
  411:                   INDXP( K2+I-1 ) = INDXP( K2+I )
  412:                   INDXP( K2+I ) = PJ
  413:                   I = I + 1
  414:                   GO TO 90
  415:                ELSE
  416:                   INDXP( K2+I-1 ) = PJ
  417:                END IF
  418:             ELSE
  419:                INDXP( K2+I-1 ) = PJ
  420:             END IF
  421:             PJ = NJ
  422:          ELSE
  423:             K = K + 1
  424:             DLAMDA( K ) = D( PJ )
  425:             W( K ) = Z( PJ )
  426:             INDXP( K ) = PJ
  427:             PJ = NJ
  428:          END IF
  429:       END IF
  430:       GO TO 80
  431:   100 CONTINUE
  432: *
  433: *     Record the last eigenvalue.
  434: *
  435:       K = K + 1
  436:       DLAMDA( K ) = D( PJ )
  437:       W( K ) = Z( PJ )
  438:       INDXP( K ) = PJ
  439: *
  440: *     Count up the total number of the various types of columns, then
  441: *     form a permutation which positions the four column types into
  442: *     four uniform groups (although one or more of these groups may be
  443: *     empty).
  444: *
  445:       DO 110 J = 1, 4
  446:          CTOT( J ) = 0
  447:   110 CONTINUE
  448:       DO 120 J = 1, N
  449:          CT = COLTYP( J )
  450:          CTOT( CT ) = CTOT( CT ) + 1
  451:   120 CONTINUE
  452: *
  453: *     PSM(*) = Position in SubMatrix (of types 1 through 4)
  454: *
  455:       PSM( 1 ) = 1
  456:       PSM( 2 ) = 1 + CTOT( 1 )
  457:       PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
  458:       PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
  459:       K = N - CTOT( 4 )
  460: *
  461: *     Fill out the INDXC array so that the permutation which it induces
  462: *     will place all type-1 columns first, all type-2 columns next,
  463: *     then all type-3's, and finally all type-4's.
  464: *
  465:       DO 130 J = 1, N
  466:          JS = INDXP( J )
  467:          CT = COLTYP( JS )
  468:          INDX( PSM( CT ) ) = JS
  469:          INDXC( PSM( CT ) ) = J
  470:          PSM( CT ) = PSM( CT ) + 1
  471:   130 CONTINUE
  472: *
  473: *     Sort the eigenvalues and corresponding eigenvectors into DLAMDA
  474: *     and Q2 respectively.  The eigenvalues/vectors which were not
  475: *     deflated go into the first K slots of DLAMDA and Q2 respectively,
  476: *     while those which were deflated go into the last N - K slots.
  477: *
  478:       I = 1
  479:       IQ1 = 1
  480:       IQ2 = 1 + ( CTOT( 1 )+CTOT( 2 ) )*N1
  481:       DO 140 J = 1, CTOT( 1 )
  482:          JS = INDX( I )
  483:          CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
  484:          Z( I ) = D( JS )
  485:          I = I + 1
  486:          IQ1 = IQ1 + N1
  487:   140 CONTINUE
  488: *
  489:       DO 150 J = 1, CTOT( 2 )
  490:          JS = INDX( I )
  491:          CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
  492:          CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
  493:          Z( I ) = D( JS )
  494:          I = I + 1
  495:          IQ1 = IQ1 + N1
  496:          IQ2 = IQ2 + N2
  497:   150 CONTINUE
  498: *
  499:       DO 160 J = 1, CTOT( 3 )
  500:          JS = INDX( I )
  501:          CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
  502:          Z( I ) = D( JS )
  503:          I = I + 1
  504:          IQ2 = IQ2 + N2
  505:   160 CONTINUE
  506: *
  507:       IQ1 = IQ2
  508:       DO 170 J = 1, CTOT( 4 )
  509:          JS = INDX( I )
  510:          CALL DCOPY( N, Q( 1, JS ), 1, Q2( IQ2 ), 1 )
  511:          IQ2 = IQ2 + N
  512:          Z( I ) = D( JS )
  513:          I = I + 1
  514:   170 CONTINUE
  515: *
  516: *     The deflated eigenvalues and their corresponding vectors go back
  517: *     into the last N - K slots of D and Q respectively.
  518: *
  519:       IF( K.LT.N ) THEN
  520:          CALL DLACPY( 'A', N, CTOT( 4 ), Q2( IQ1 ), N,
  521:      $                Q( 1, K+1 ), LDQ )
  522:          CALL DCOPY( N-K, Z( K+1 ), 1, D( K+1 ), 1 )
  523:       END IF
  524: *
  525: *     Copy CTOT into COLTYP for referencing in DLAED3.
  526: *
  527:       DO 180 J = 1, 4
  528:          COLTYP( J ) = CTOT( J )
  529:   180 CONTINUE
  530: *
  531:   190 CONTINUE
  532:       RETURN
  533: *
  534: *     End of DLAED2
  535: *
  536:       END

CVSweb interface <joel.bertrand@systella.fr>