Annotation of rpl/lapack/lapack/dlaed2.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W,
                      2:      $                   Q2, INDX, INDXC, INDXP, COLTYP, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            INFO, K, LDQ, N, N1
                     11:       DOUBLE PRECISION   RHO
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
                     15:      $                   INDXQ( * )
                     16:       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
                     17:      $                   W( * ), Z( * )
                     18: *     ..
                     19: *
                     20: *  Purpose
                     21: *  =======
                     22: *
                     23: *  DLAED2 merges the two sets of eigenvalues together into a single
                     24: *  sorted set.  Then it tries to deflate the size of the problem.
                     25: *  There are two ways in which deflation can occur:  when two or more
                     26: *  eigenvalues are close together or if there is a tiny entry in the
                     27: *  Z vector.  For each such occurrence the order of the related secular
                     28: *  equation problem is reduced by one.
                     29: *
                     30: *  Arguments
                     31: *  =========
                     32: *
                     33: *  K      (output) INTEGER
                     34: *         The number of non-deflated eigenvalues, and the order of the
                     35: *         related secular equation. 0 <= K <=N.
                     36: *
                     37: *  N      (input) INTEGER
                     38: *         The dimension of the symmetric tridiagonal matrix.  N >= 0.
                     39: *
                     40: *  N1     (input) INTEGER
                     41: *         The location of the last eigenvalue in the leading sub-matrix.
                     42: *         min(1,N) <= N1 <= N/2.
                     43: *
                     44: *  D      (input/output) DOUBLE PRECISION array, dimension (N)
                     45: *         On entry, D contains the eigenvalues of the two submatrices to
                     46: *         be combined.
                     47: *         On exit, D contains the trailing (N-K) updated eigenvalues
                     48: *         (those which were deflated) sorted into increasing order.
                     49: *
                     50: *  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
                     51: *         On entry, Q contains the eigenvectors of two submatrices in
                     52: *         the two square blocks with corners at (1,1), (N1,N1)
                     53: *         and (N1+1, N1+1), (N,N).
                     54: *         On exit, Q contains the trailing (N-K) updated eigenvectors
                     55: *         (those which were deflated) in its last N-K columns.
                     56: *
                     57: *  LDQ    (input) INTEGER
                     58: *         The leading dimension of the array Q.  LDQ >= max(1,N).
                     59: *
                     60: *  INDXQ  (input/output) INTEGER array, dimension (N)
                     61: *         The permutation which separately sorts the two sub-problems
                     62: *         in D into ascending order.  Note that elements in the second
                     63: *         half of this permutation must first have N1 added to their
                     64: *         values. Destroyed on exit.
                     65: *
                     66: *  RHO    (input/output) DOUBLE PRECISION
                     67: *         On entry, the off-diagonal element associated with the rank-1
                     68: *         cut which originally split the two submatrices which are now
                     69: *         being recombined.
                     70: *         On exit, RHO has been modified to the value required by
                     71: *         DLAED3.
                     72: *
                     73: *  Z      (input) DOUBLE PRECISION array, dimension (N)
                     74: *         On entry, Z contains the updating vector (the last
                     75: *         row of the first sub-eigenvector matrix and the first row of
                     76: *         the second sub-eigenvector matrix).
                     77: *         On exit, the contents of Z have been destroyed by the updating
                     78: *         process.
                     79: *
                     80: *  DLAMDA (output) DOUBLE PRECISION array, dimension (N)
                     81: *         A copy of the first K eigenvalues which will be used by
                     82: *         DLAED3 to form the secular equation.
                     83: *
                     84: *  W      (output) DOUBLE PRECISION array, dimension (N)
                     85: *         The first k values of the final deflation-altered z-vector
                     86: *         which will be passed to DLAED3.
                     87: *
                     88: *  Q2     (output) DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2)
                     89: *         A copy of the first K eigenvectors which will be used by
                     90: *         DLAED3 in a matrix multiply (DGEMM) to solve for the new
                     91: *         eigenvectors.
                     92: *
                     93: *  INDX   (workspace) INTEGER array, dimension (N)
                     94: *         The permutation used to sort the contents of DLAMDA into
                     95: *         ascending order.
                     96: *
                     97: *  INDXC  (output) INTEGER array, dimension (N)
                     98: *         The permutation used to arrange the columns of the deflated
                     99: *         Q matrix into three groups:  the first group contains non-zero
                    100: *         elements only at and above N1, the second contains
                    101: *         non-zero elements only below N1, and the third is dense.
                    102: *
                    103: *  INDXP  (workspace) INTEGER array, dimension (N)
                    104: *         The permutation used to place deflated values of D at the end
                    105: *         of the array.  INDXP(1:K) points to the nondeflated D-values
                    106: *         and INDXP(K+1:N) points to the deflated eigenvalues.
                    107: *
                    108: *  COLTYP (workspace/output) INTEGER array, dimension (N)
                    109: *         During execution, a label which will indicate which of the
                    110: *         following types a column in the Q2 matrix is:
                    111: *         1 : non-zero in the upper half only;
                    112: *         2 : dense;
                    113: *         3 : non-zero in the lower half only;
                    114: *         4 : deflated.
                    115: *         On exit, COLTYP(i) is the number of columns of type i,
                    116: *         for i=1 to 4 only.
                    117: *
                    118: *  INFO   (output) INTEGER
                    119: *          = 0:  successful exit.
                    120: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    121: *
                    122: *  Further Details
                    123: *  ===============
                    124: *
                    125: *  Based on contributions by
                    126: *     Jeff Rutter, Computer Science Division, University of California
                    127: *     at Berkeley, USA
                    128: *  Modified by Francoise Tisseur, University of Tennessee.
                    129: *
                    130: *  =====================================================================
                    131: *
                    132: *     .. Parameters ..
                    133:       DOUBLE PRECISION   MONE, ZERO, ONE, TWO, EIGHT
                    134:       PARAMETER          ( MONE = -1.0D0, ZERO = 0.0D0, ONE = 1.0D0,
                    135:      $                   TWO = 2.0D0, EIGHT = 8.0D0 )
                    136: *     ..
                    137: *     .. Local Arrays ..
                    138:       INTEGER            CTOT( 4 ), PSM( 4 )
                    139: *     ..
                    140: *     .. Local Scalars ..
                    141:       INTEGER            CT, I, IMAX, IQ1, IQ2, J, JMAX, JS, K2, N1P1,
                    142:      $                   N2, NJ, PJ
                    143:       DOUBLE PRECISION   C, EPS, S, T, TAU, TOL
                    144: *     ..
                    145: *     .. External Functions ..
                    146:       INTEGER            IDAMAX
                    147:       DOUBLE PRECISION   DLAMCH, DLAPY2
                    148:       EXTERNAL           IDAMAX, DLAMCH, DLAPY2
                    149: *     ..
                    150: *     .. External Subroutines ..
                    151:       EXTERNAL           DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA
                    152: *     ..
                    153: *     .. Intrinsic Functions ..
                    154:       INTRINSIC          ABS, MAX, MIN, SQRT
                    155: *     ..
                    156: *     .. Executable Statements ..
                    157: *
                    158: *     Test the input parameters.
                    159: *
                    160:       INFO = 0
                    161: *
                    162:       IF( N.LT.0 ) THEN
                    163:          INFO = -2
                    164:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
                    165:          INFO = -6
                    166:       ELSE IF( MIN( 1, ( N / 2 ) ).GT.N1 .OR. ( N / 2 ).LT.N1 ) THEN
                    167:          INFO = -3
                    168:       END IF
                    169:       IF( INFO.NE.0 ) THEN
                    170:          CALL XERBLA( 'DLAED2', -INFO )
                    171:          RETURN
                    172:       END IF
                    173: *
                    174: *     Quick return if possible
                    175: *
                    176:       IF( N.EQ.0 )
                    177:      $   RETURN
                    178: *
                    179:       N2 = N - N1
                    180:       N1P1 = N1 + 1
                    181: *
                    182:       IF( RHO.LT.ZERO ) THEN
                    183:          CALL DSCAL( N2, MONE, Z( N1P1 ), 1 )
                    184:       END IF
                    185: *
                    186: *     Normalize z so that norm(z) = 1.  Since z is the concatenation of
                    187: *     two normalized vectors, norm2(z) = sqrt(2).
                    188: *
                    189:       T = ONE / SQRT( TWO )
                    190:       CALL DSCAL( N, T, Z, 1 )
                    191: *
                    192: *     RHO = ABS( norm(z)**2 * RHO )
                    193: *
                    194:       RHO = ABS( TWO*RHO )
                    195: *
                    196: *     Sort the eigenvalues into increasing order
                    197: *
                    198:       DO 10 I = N1P1, N
                    199:          INDXQ( I ) = INDXQ( I ) + N1
                    200:    10 CONTINUE
                    201: *
                    202: *     re-integrate the deflated parts from the last pass
                    203: *
                    204:       DO 20 I = 1, N
                    205:          DLAMDA( I ) = D( INDXQ( I ) )
                    206:    20 CONTINUE
                    207:       CALL DLAMRG( N1, N2, DLAMDA, 1, 1, INDXC )
                    208:       DO 30 I = 1, N
                    209:          INDX( I ) = INDXQ( INDXC( I ) )
                    210:    30 CONTINUE
                    211: *
                    212: *     Calculate the allowable deflation tolerance
                    213: *
                    214:       IMAX = IDAMAX( N, Z, 1 )
                    215:       JMAX = IDAMAX( N, D, 1 )
                    216:       EPS = DLAMCH( 'Epsilon' )
                    217:       TOL = EIGHT*EPS*MAX( ABS( D( JMAX ) ), ABS( Z( IMAX ) ) )
                    218: *
                    219: *     If the rank-1 modifier is small enough, no more needs to be done
                    220: *     except to reorganize Q so that its columns correspond with the
                    221: *     elements in D.
                    222: *
                    223:       IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
                    224:          K = 0
                    225:          IQ2 = 1
                    226:          DO 40 J = 1, N
                    227:             I = INDX( J )
                    228:             CALL DCOPY( N, Q( 1, I ), 1, Q2( IQ2 ), 1 )
                    229:             DLAMDA( J ) = D( I )
                    230:             IQ2 = IQ2 + N
                    231:    40    CONTINUE
                    232:          CALL DLACPY( 'A', N, N, Q2, N, Q, LDQ )
                    233:          CALL DCOPY( N, DLAMDA, 1, D, 1 )
                    234:          GO TO 190
                    235:       END IF
                    236: *
                    237: *     If there are multiple eigenvalues then the problem deflates.  Here
                    238: *     the number of equal eigenvalues are found.  As each equal
                    239: *     eigenvalue is found, an elementary reflector is computed to rotate
                    240: *     the corresponding eigensubspace so that the corresponding
                    241: *     components of Z are zero in this new basis.
                    242: *
                    243:       DO 50 I = 1, N1
                    244:          COLTYP( I ) = 1
                    245:    50 CONTINUE
                    246:       DO 60 I = N1P1, N
                    247:          COLTYP( I ) = 3
                    248:    60 CONTINUE
                    249: *
                    250: *
                    251:       K = 0
                    252:       K2 = N + 1
                    253:       DO 70 J = 1, N
                    254:          NJ = INDX( J )
                    255:          IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
                    256: *
                    257: *           Deflate due to small z component.
                    258: *
                    259:             K2 = K2 - 1
                    260:             COLTYP( NJ ) = 4
                    261:             INDXP( K2 ) = NJ
                    262:             IF( J.EQ.N )
                    263:      $         GO TO 100
                    264:          ELSE
                    265:             PJ = NJ
                    266:             GO TO 80
                    267:          END IF
                    268:    70 CONTINUE
                    269:    80 CONTINUE
                    270:       J = J + 1
                    271:       NJ = INDX( J )
                    272:       IF( J.GT.N )
                    273:      $   GO TO 100
                    274:       IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
                    275: *
                    276: *        Deflate due to small z component.
                    277: *
                    278:          K2 = K2 - 1
                    279:          COLTYP( NJ ) = 4
                    280:          INDXP( K2 ) = NJ
                    281:       ELSE
                    282: *
                    283: *        Check if eigenvalues are close enough to allow deflation.
                    284: *
                    285:          S = Z( PJ )
                    286:          C = Z( NJ )
                    287: *
                    288: *        Find sqrt(a**2+b**2) without overflow or
                    289: *        destructive underflow.
                    290: *
                    291:          TAU = DLAPY2( C, S )
                    292:          T = D( NJ ) - D( PJ )
                    293:          C = C / TAU
                    294:          S = -S / TAU
                    295:          IF( ABS( T*C*S ).LE.TOL ) THEN
                    296: *
                    297: *           Deflation is possible.
                    298: *
                    299:             Z( NJ ) = TAU
                    300:             Z( PJ ) = ZERO
                    301:             IF( COLTYP( NJ ).NE.COLTYP( PJ ) )
                    302:      $         COLTYP( NJ ) = 2
                    303:             COLTYP( PJ ) = 4
                    304:             CALL DROT( N, Q( 1, PJ ), 1, Q( 1, NJ ), 1, C, S )
                    305:             T = D( PJ )*C**2 + D( NJ )*S**2
                    306:             D( NJ ) = D( PJ )*S**2 + D( NJ )*C**2
                    307:             D( PJ ) = T
                    308:             K2 = K2 - 1
                    309:             I = 1
                    310:    90       CONTINUE
                    311:             IF( K2+I.LE.N ) THEN
                    312:                IF( D( PJ ).LT.D( INDXP( K2+I ) ) ) THEN
                    313:                   INDXP( K2+I-1 ) = INDXP( K2+I )
                    314:                   INDXP( K2+I ) = PJ
                    315:                   I = I + 1
                    316:                   GO TO 90
                    317:                ELSE
                    318:                   INDXP( K2+I-1 ) = PJ
                    319:                END IF
                    320:             ELSE
                    321:                INDXP( K2+I-1 ) = PJ
                    322:             END IF
                    323:             PJ = NJ
                    324:          ELSE
                    325:             K = K + 1
                    326:             DLAMDA( K ) = D( PJ )
                    327:             W( K ) = Z( PJ )
                    328:             INDXP( K ) = PJ
                    329:             PJ = NJ
                    330:          END IF
                    331:       END IF
                    332:       GO TO 80
                    333:   100 CONTINUE
                    334: *
                    335: *     Record the last eigenvalue.
                    336: *
                    337:       K = K + 1
                    338:       DLAMDA( K ) = D( PJ )
                    339:       W( K ) = Z( PJ )
                    340:       INDXP( K ) = PJ
                    341: *
                    342: *     Count up the total number of the various types of columns, then
                    343: *     form a permutation which positions the four column types into
                    344: *     four uniform groups (although one or more of these groups may be
                    345: *     empty).
                    346: *
                    347:       DO 110 J = 1, 4
                    348:          CTOT( J ) = 0
                    349:   110 CONTINUE
                    350:       DO 120 J = 1, N
                    351:          CT = COLTYP( J )
                    352:          CTOT( CT ) = CTOT( CT ) + 1
                    353:   120 CONTINUE
                    354: *
                    355: *     PSM(*) = Position in SubMatrix (of types 1 through 4)
                    356: *
                    357:       PSM( 1 ) = 1
                    358:       PSM( 2 ) = 1 + CTOT( 1 )
                    359:       PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
                    360:       PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
                    361:       K = N - CTOT( 4 )
                    362: *
                    363: *     Fill out the INDXC array so that the permutation which it induces
                    364: *     will place all type-1 columns first, all type-2 columns next,
                    365: *     then all type-3's, and finally all type-4's.
                    366: *
                    367:       DO 130 J = 1, N
                    368:          JS = INDXP( J )
                    369:          CT = COLTYP( JS )
                    370:          INDX( PSM( CT ) ) = JS
                    371:          INDXC( PSM( CT ) ) = J
                    372:          PSM( CT ) = PSM( CT ) + 1
                    373:   130 CONTINUE
                    374: *
                    375: *     Sort the eigenvalues and corresponding eigenvectors into DLAMDA
                    376: *     and Q2 respectively.  The eigenvalues/vectors which were not
                    377: *     deflated go into the first K slots of DLAMDA and Q2 respectively,
                    378: *     while those which were deflated go into the last N - K slots.
                    379: *
                    380:       I = 1
                    381:       IQ1 = 1
                    382:       IQ2 = 1 + ( CTOT( 1 )+CTOT( 2 ) )*N1
                    383:       DO 140 J = 1, CTOT( 1 )
                    384:          JS = INDX( I )
                    385:          CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
                    386:          Z( I ) = D( JS )
                    387:          I = I + 1
                    388:          IQ1 = IQ1 + N1
                    389:   140 CONTINUE
                    390: *
                    391:       DO 150 J = 1, CTOT( 2 )
                    392:          JS = INDX( I )
                    393:          CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
                    394:          CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
                    395:          Z( I ) = D( JS )
                    396:          I = I + 1
                    397:          IQ1 = IQ1 + N1
                    398:          IQ2 = IQ2 + N2
                    399:   150 CONTINUE
                    400: *
                    401:       DO 160 J = 1, CTOT( 3 )
                    402:          JS = INDX( I )
                    403:          CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
                    404:          Z( I ) = D( JS )
                    405:          I = I + 1
                    406:          IQ2 = IQ2 + N2
                    407:   160 CONTINUE
                    408: *
                    409:       IQ1 = IQ2
                    410:       DO 170 J = 1, CTOT( 4 )
                    411:          JS = INDX( I )
                    412:          CALL DCOPY( N, Q( 1, JS ), 1, Q2( IQ2 ), 1 )
                    413:          IQ2 = IQ2 + N
                    414:          Z( I ) = D( JS )
                    415:          I = I + 1
                    416:   170 CONTINUE
                    417: *
                    418: *     The deflated eigenvalues and their corresponding vectors go back
                    419: *     into the last N - K slots of D and Q respectively.
                    420: *
                    421:       CALL DLACPY( 'A', N, CTOT( 4 ), Q2( IQ1 ), N, Q( 1, K+1 ), LDQ )
                    422:       CALL DCOPY( N-K, Z( K+1 ), 1, D( K+1 ), 1 )
                    423: *
                    424: *     Copy CTOT into COLTYP for referencing in DLAED3.
                    425: *
                    426:       DO 180 J = 1, 4
                    427:          COLTYP( J ) = CTOT( J )
                    428:   180 CONTINUE
                    429: *
                    430:   190 CONTINUE
                    431:       RETURN
                    432: *
                    433: *     End of DLAED2
                    434: *
                    435:       END

CVSweb interface <joel.bertrand@systella.fr>