Annotation of rpl/lapack/lapack/dlaed2.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W,
        !             2:      $                   Q2, INDX, INDXC, INDXP, COLTYP, INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            INFO, K, LDQ, N, N1
        !            11:       DOUBLE PRECISION   RHO
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
        !            15:      $                   INDXQ( * )
        !            16:       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
        !            17:      $                   W( * ), Z( * )
        !            18: *     ..
        !            19: *
        !            20: *  Purpose
        !            21: *  =======
        !            22: *
        !            23: *  DLAED2 merges the two sets of eigenvalues together into a single
        !            24: *  sorted set.  Then it tries to deflate the size of the problem.
        !            25: *  There are two ways in which deflation can occur:  when two or more
        !            26: *  eigenvalues are close together or if there is a tiny entry in the
        !            27: *  Z vector.  For each such occurrence the order of the related secular
        !            28: *  equation problem is reduced by one.
        !            29: *
        !            30: *  Arguments
        !            31: *  =========
        !            32: *
        !            33: *  K      (output) INTEGER
        !            34: *         The number of non-deflated eigenvalues, and the order of the
        !            35: *         related secular equation. 0 <= K <=N.
        !            36: *
        !            37: *  N      (input) INTEGER
        !            38: *         The dimension of the symmetric tridiagonal matrix.  N >= 0.
        !            39: *
        !            40: *  N1     (input) INTEGER
        !            41: *         The location of the last eigenvalue in the leading sub-matrix.
        !            42: *         min(1,N) <= N1 <= N/2.
        !            43: *
        !            44: *  D      (input/output) DOUBLE PRECISION array, dimension (N)
        !            45: *         On entry, D contains the eigenvalues of the two submatrices to
        !            46: *         be combined.
        !            47: *         On exit, D contains the trailing (N-K) updated eigenvalues
        !            48: *         (those which were deflated) sorted into increasing order.
        !            49: *
        !            50: *  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
        !            51: *         On entry, Q contains the eigenvectors of two submatrices in
        !            52: *         the two square blocks with corners at (1,1), (N1,N1)
        !            53: *         and (N1+1, N1+1), (N,N).
        !            54: *         On exit, Q contains the trailing (N-K) updated eigenvectors
        !            55: *         (those which were deflated) in its last N-K columns.
        !            56: *
        !            57: *  LDQ    (input) INTEGER
        !            58: *         The leading dimension of the array Q.  LDQ >= max(1,N).
        !            59: *
        !            60: *  INDXQ  (input/output) INTEGER array, dimension (N)
        !            61: *         The permutation which separately sorts the two sub-problems
        !            62: *         in D into ascending order.  Note that elements in the second
        !            63: *         half of this permutation must first have N1 added to their
        !            64: *         values. Destroyed on exit.
        !            65: *
        !            66: *  RHO    (input/output) DOUBLE PRECISION
        !            67: *         On entry, the off-diagonal element associated with the rank-1
        !            68: *         cut which originally split the two submatrices which are now
        !            69: *         being recombined.
        !            70: *         On exit, RHO has been modified to the value required by
        !            71: *         DLAED3.
        !            72: *
        !            73: *  Z      (input) DOUBLE PRECISION array, dimension (N)
        !            74: *         On entry, Z contains the updating vector (the last
        !            75: *         row of the first sub-eigenvector matrix and the first row of
        !            76: *         the second sub-eigenvector matrix).
        !            77: *         On exit, the contents of Z have been destroyed by the updating
        !            78: *         process.
        !            79: *
        !            80: *  DLAMDA (output) DOUBLE PRECISION array, dimension (N)
        !            81: *         A copy of the first K eigenvalues which will be used by
        !            82: *         DLAED3 to form the secular equation.
        !            83: *
        !            84: *  W      (output) DOUBLE PRECISION array, dimension (N)
        !            85: *         The first k values of the final deflation-altered z-vector
        !            86: *         which will be passed to DLAED3.
        !            87: *
        !            88: *  Q2     (output) DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2)
        !            89: *         A copy of the first K eigenvectors which will be used by
        !            90: *         DLAED3 in a matrix multiply (DGEMM) to solve for the new
        !            91: *         eigenvectors.
        !            92: *
        !            93: *  INDX   (workspace) INTEGER array, dimension (N)
        !            94: *         The permutation used to sort the contents of DLAMDA into
        !            95: *         ascending order.
        !            96: *
        !            97: *  INDXC  (output) INTEGER array, dimension (N)
        !            98: *         The permutation used to arrange the columns of the deflated
        !            99: *         Q matrix into three groups:  the first group contains non-zero
        !           100: *         elements only at and above N1, the second contains
        !           101: *         non-zero elements only below N1, and the third is dense.
        !           102: *
        !           103: *  INDXP  (workspace) INTEGER array, dimension (N)
        !           104: *         The permutation used to place deflated values of D at the end
        !           105: *         of the array.  INDXP(1:K) points to the nondeflated D-values
        !           106: *         and INDXP(K+1:N) points to the deflated eigenvalues.
        !           107: *
        !           108: *  COLTYP (workspace/output) INTEGER array, dimension (N)
        !           109: *         During execution, a label which will indicate which of the
        !           110: *         following types a column in the Q2 matrix is:
        !           111: *         1 : non-zero in the upper half only;
        !           112: *         2 : dense;
        !           113: *         3 : non-zero in the lower half only;
        !           114: *         4 : deflated.
        !           115: *         On exit, COLTYP(i) is the number of columns of type i,
        !           116: *         for i=1 to 4 only.
        !           117: *
        !           118: *  INFO   (output) INTEGER
        !           119: *          = 0:  successful exit.
        !           120: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           121: *
        !           122: *  Further Details
        !           123: *  ===============
        !           124: *
        !           125: *  Based on contributions by
        !           126: *     Jeff Rutter, Computer Science Division, University of California
        !           127: *     at Berkeley, USA
        !           128: *  Modified by Francoise Tisseur, University of Tennessee.
        !           129: *
        !           130: *  =====================================================================
        !           131: *
        !           132: *     .. Parameters ..
        !           133:       DOUBLE PRECISION   MONE, ZERO, ONE, TWO, EIGHT
        !           134:       PARAMETER          ( MONE = -1.0D0, ZERO = 0.0D0, ONE = 1.0D0,
        !           135:      $                   TWO = 2.0D0, EIGHT = 8.0D0 )
        !           136: *     ..
        !           137: *     .. Local Arrays ..
        !           138:       INTEGER            CTOT( 4 ), PSM( 4 )
        !           139: *     ..
        !           140: *     .. Local Scalars ..
        !           141:       INTEGER            CT, I, IMAX, IQ1, IQ2, J, JMAX, JS, K2, N1P1,
        !           142:      $                   N2, NJ, PJ
        !           143:       DOUBLE PRECISION   C, EPS, S, T, TAU, TOL
        !           144: *     ..
        !           145: *     .. External Functions ..
        !           146:       INTEGER            IDAMAX
        !           147:       DOUBLE PRECISION   DLAMCH, DLAPY2
        !           148:       EXTERNAL           IDAMAX, DLAMCH, DLAPY2
        !           149: *     ..
        !           150: *     .. External Subroutines ..
        !           151:       EXTERNAL           DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA
        !           152: *     ..
        !           153: *     .. Intrinsic Functions ..
        !           154:       INTRINSIC          ABS, MAX, MIN, SQRT
        !           155: *     ..
        !           156: *     .. Executable Statements ..
        !           157: *
        !           158: *     Test the input parameters.
        !           159: *
        !           160:       INFO = 0
        !           161: *
        !           162:       IF( N.LT.0 ) THEN
        !           163:          INFO = -2
        !           164:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
        !           165:          INFO = -6
        !           166:       ELSE IF( MIN( 1, ( N / 2 ) ).GT.N1 .OR. ( N / 2 ).LT.N1 ) THEN
        !           167:          INFO = -3
        !           168:       END IF
        !           169:       IF( INFO.NE.0 ) THEN
        !           170:          CALL XERBLA( 'DLAED2', -INFO )
        !           171:          RETURN
        !           172:       END IF
        !           173: *
        !           174: *     Quick return if possible
        !           175: *
        !           176:       IF( N.EQ.0 )
        !           177:      $   RETURN
        !           178: *
        !           179:       N2 = N - N1
        !           180:       N1P1 = N1 + 1
        !           181: *
        !           182:       IF( RHO.LT.ZERO ) THEN
        !           183:          CALL DSCAL( N2, MONE, Z( N1P1 ), 1 )
        !           184:       END IF
        !           185: *
        !           186: *     Normalize z so that norm(z) = 1.  Since z is the concatenation of
        !           187: *     two normalized vectors, norm2(z) = sqrt(2).
        !           188: *
        !           189:       T = ONE / SQRT( TWO )
        !           190:       CALL DSCAL( N, T, Z, 1 )
        !           191: *
        !           192: *     RHO = ABS( norm(z)**2 * RHO )
        !           193: *
        !           194:       RHO = ABS( TWO*RHO )
        !           195: *
        !           196: *     Sort the eigenvalues into increasing order
        !           197: *
        !           198:       DO 10 I = N1P1, N
        !           199:          INDXQ( I ) = INDXQ( I ) + N1
        !           200:    10 CONTINUE
        !           201: *
        !           202: *     re-integrate the deflated parts from the last pass
        !           203: *
        !           204:       DO 20 I = 1, N
        !           205:          DLAMDA( I ) = D( INDXQ( I ) )
        !           206:    20 CONTINUE
        !           207:       CALL DLAMRG( N1, N2, DLAMDA, 1, 1, INDXC )
        !           208:       DO 30 I = 1, N
        !           209:          INDX( I ) = INDXQ( INDXC( I ) )
        !           210:    30 CONTINUE
        !           211: *
        !           212: *     Calculate the allowable deflation tolerance
        !           213: *
        !           214:       IMAX = IDAMAX( N, Z, 1 )
        !           215:       JMAX = IDAMAX( N, D, 1 )
        !           216:       EPS = DLAMCH( 'Epsilon' )
        !           217:       TOL = EIGHT*EPS*MAX( ABS( D( JMAX ) ), ABS( Z( IMAX ) ) )
        !           218: *
        !           219: *     If the rank-1 modifier is small enough, no more needs to be done
        !           220: *     except to reorganize Q so that its columns correspond with the
        !           221: *     elements in D.
        !           222: *
        !           223:       IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
        !           224:          K = 0
        !           225:          IQ2 = 1
        !           226:          DO 40 J = 1, N
        !           227:             I = INDX( J )
        !           228:             CALL DCOPY( N, Q( 1, I ), 1, Q2( IQ2 ), 1 )
        !           229:             DLAMDA( J ) = D( I )
        !           230:             IQ2 = IQ2 + N
        !           231:    40    CONTINUE
        !           232:          CALL DLACPY( 'A', N, N, Q2, N, Q, LDQ )
        !           233:          CALL DCOPY( N, DLAMDA, 1, D, 1 )
        !           234:          GO TO 190
        !           235:       END IF
        !           236: *
        !           237: *     If there are multiple eigenvalues then the problem deflates.  Here
        !           238: *     the number of equal eigenvalues are found.  As each equal
        !           239: *     eigenvalue is found, an elementary reflector is computed to rotate
        !           240: *     the corresponding eigensubspace so that the corresponding
        !           241: *     components of Z are zero in this new basis.
        !           242: *
        !           243:       DO 50 I = 1, N1
        !           244:          COLTYP( I ) = 1
        !           245:    50 CONTINUE
        !           246:       DO 60 I = N1P1, N
        !           247:          COLTYP( I ) = 3
        !           248:    60 CONTINUE
        !           249: *
        !           250: *
        !           251:       K = 0
        !           252:       K2 = N + 1
        !           253:       DO 70 J = 1, N
        !           254:          NJ = INDX( J )
        !           255:          IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
        !           256: *
        !           257: *           Deflate due to small z component.
        !           258: *
        !           259:             K2 = K2 - 1
        !           260:             COLTYP( NJ ) = 4
        !           261:             INDXP( K2 ) = NJ
        !           262:             IF( J.EQ.N )
        !           263:      $         GO TO 100
        !           264:          ELSE
        !           265:             PJ = NJ
        !           266:             GO TO 80
        !           267:          END IF
        !           268:    70 CONTINUE
        !           269:    80 CONTINUE
        !           270:       J = J + 1
        !           271:       NJ = INDX( J )
        !           272:       IF( J.GT.N )
        !           273:      $   GO TO 100
        !           274:       IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
        !           275: *
        !           276: *        Deflate due to small z component.
        !           277: *
        !           278:          K2 = K2 - 1
        !           279:          COLTYP( NJ ) = 4
        !           280:          INDXP( K2 ) = NJ
        !           281:       ELSE
        !           282: *
        !           283: *        Check if eigenvalues are close enough to allow deflation.
        !           284: *
        !           285:          S = Z( PJ )
        !           286:          C = Z( NJ )
        !           287: *
        !           288: *        Find sqrt(a**2+b**2) without overflow or
        !           289: *        destructive underflow.
        !           290: *
        !           291:          TAU = DLAPY2( C, S )
        !           292:          T = D( NJ ) - D( PJ )
        !           293:          C = C / TAU
        !           294:          S = -S / TAU
        !           295:          IF( ABS( T*C*S ).LE.TOL ) THEN
        !           296: *
        !           297: *           Deflation is possible.
        !           298: *
        !           299:             Z( NJ ) = TAU
        !           300:             Z( PJ ) = ZERO
        !           301:             IF( COLTYP( NJ ).NE.COLTYP( PJ ) )
        !           302:      $         COLTYP( NJ ) = 2
        !           303:             COLTYP( PJ ) = 4
        !           304:             CALL DROT( N, Q( 1, PJ ), 1, Q( 1, NJ ), 1, C, S )
        !           305:             T = D( PJ )*C**2 + D( NJ )*S**2
        !           306:             D( NJ ) = D( PJ )*S**2 + D( NJ )*C**2
        !           307:             D( PJ ) = T
        !           308:             K2 = K2 - 1
        !           309:             I = 1
        !           310:    90       CONTINUE
        !           311:             IF( K2+I.LE.N ) THEN
        !           312:                IF( D( PJ ).LT.D( INDXP( K2+I ) ) ) THEN
        !           313:                   INDXP( K2+I-1 ) = INDXP( K2+I )
        !           314:                   INDXP( K2+I ) = PJ
        !           315:                   I = I + 1
        !           316:                   GO TO 90
        !           317:                ELSE
        !           318:                   INDXP( K2+I-1 ) = PJ
        !           319:                END IF
        !           320:             ELSE
        !           321:                INDXP( K2+I-1 ) = PJ
        !           322:             END IF
        !           323:             PJ = NJ
        !           324:          ELSE
        !           325:             K = K + 1
        !           326:             DLAMDA( K ) = D( PJ )
        !           327:             W( K ) = Z( PJ )
        !           328:             INDXP( K ) = PJ
        !           329:             PJ = NJ
        !           330:          END IF
        !           331:       END IF
        !           332:       GO TO 80
        !           333:   100 CONTINUE
        !           334: *
        !           335: *     Record the last eigenvalue.
        !           336: *
        !           337:       K = K + 1
        !           338:       DLAMDA( K ) = D( PJ )
        !           339:       W( K ) = Z( PJ )
        !           340:       INDXP( K ) = PJ
        !           341: *
        !           342: *     Count up the total number of the various types of columns, then
        !           343: *     form a permutation which positions the four column types into
        !           344: *     four uniform groups (although one or more of these groups may be
        !           345: *     empty).
        !           346: *
        !           347:       DO 110 J = 1, 4
        !           348:          CTOT( J ) = 0
        !           349:   110 CONTINUE
        !           350:       DO 120 J = 1, N
        !           351:          CT = COLTYP( J )
        !           352:          CTOT( CT ) = CTOT( CT ) + 1
        !           353:   120 CONTINUE
        !           354: *
        !           355: *     PSM(*) = Position in SubMatrix (of types 1 through 4)
        !           356: *
        !           357:       PSM( 1 ) = 1
        !           358:       PSM( 2 ) = 1 + CTOT( 1 )
        !           359:       PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
        !           360:       PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
        !           361:       K = N - CTOT( 4 )
        !           362: *
        !           363: *     Fill out the INDXC array so that the permutation which it induces
        !           364: *     will place all type-1 columns first, all type-2 columns next,
        !           365: *     then all type-3's, and finally all type-4's.
        !           366: *
        !           367:       DO 130 J = 1, N
        !           368:          JS = INDXP( J )
        !           369:          CT = COLTYP( JS )
        !           370:          INDX( PSM( CT ) ) = JS
        !           371:          INDXC( PSM( CT ) ) = J
        !           372:          PSM( CT ) = PSM( CT ) + 1
        !           373:   130 CONTINUE
        !           374: *
        !           375: *     Sort the eigenvalues and corresponding eigenvectors into DLAMDA
        !           376: *     and Q2 respectively.  The eigenvalues/vectors which were not
        !           377: *     deflated go into the first K slots of DLAMDA and Q2 respectively,
        !           378: *     while those which were deflated go into the last N - K slots.
        !           379: *
        !           380:       I = 1
        !           381:       IQ1 = 1
        !           382:       IQ2 = 1 + ( CTOT( 1 )+CTOT( 2 ) )*N1
        !           383:       DO 140 J = 1, CTOT( 1 )
        !           384:          JS = INDX( I )
        !           385:          CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
        !           386:          Z( I ) = D( JS )
        !           387:          I = I + 1
        !           388:          IQ1 = IQ1 + N1
        !           389:   140 CONTINUE
        !           390: *
        !           391:       DO 150 J = 1, CTOT( 2 )
        !           392:          JS = INDX( I )
        !           393:          CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
        !           394:          CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
        !           395:          Z( I ) = D( JS )
        !           396:          I = I + 1
        !           397:          IQ1 = IQ1 + N1
        !           398:          IQ2 = IQ2 + N2
        !           399:   150 CONTINUE
        !           400: *
        !           401:       DO 160 J = 1, CTOT( 3 )
        !           402:          JS = INDX( I )
        !           403:          CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
        !           404:          Z( I ) = D( JS )
        !           405:          I = I + 1
        !           406:          IQ2 = IQ2 + N2
        !           407:   160 CONTINUE
        !           408: *
        !           409:       IQ1 = IQ2
        !           410:       DO 170 J = 1, CTOT( 4 )
        !           411:          JS = INDX( I )
        !           412:          CALL DCOPY( N, Q( 1, JS ), 1, Q2( IQ2 ), 1 )
        !           413:          IQ2 = IQ2 + N
        !           414:          Z( I ) = D( JS )
        !           415:          I = I + 1
        !           416:   170 CONTINUE
        !           417: *
        !           418: *     The deflated eigenvalues and their corresponding vectors go back
        !           419: *     into the last N - K slots of D and Q respectively.
        !           420: *
        !           421:       CALL DLACPY( 'A', N, CTOT( 4 ), Q2( IQ1 ), N, Q( 1, K+1 ), LDQ )
        !           422:       CALL DCOPY( N-K, Z( K+1 ), 1, D( K+1 ), 1 )
        !           423: *
        !           424: *     Copy CTOT into COLTYP for referencing in DLAED3.
        !           425: *
        !           426:       DO 180 J = 1, 4
        !           427:          COLTYP( J ) = CTOT( J )
        !           428:   180 CONTINUE
        !           429: *
        !           430:   190 CONTINUE
        !           431:       RETURN
        !           432: *
        !           433: *     End of DLAED2
        !           434: *
        !           435:       END

CVSweb interface <joel.bertrand@systella.fr>