File:  [local] / rpl / lapack / lapack / dlaed1.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:53 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLAED1 used by DSTEDC. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is tridiagonal.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLAED1 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed1.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed1.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed1.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,
   22: *                          INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            CUTPNT, INFO, LDQ, N
   26: *       DOUBLE PRECISION   RHO
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            INDXQ( * ), IWORK( * )
   30: *       DOUBLE PRECISION   D( * ), Q( LDQ, * ), WORK( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DLAED1 computes the updated eigensystem of a diagonal
   40: *> matrix after modification by a rank-one symmetric matrix.  This
   41: *> routine is used only for the eigenproblem which requires all
   42: *> eigenvalues and eigenvectors of a tridiagonal matrix.  DLAED7 handles
   43: *> the case in which eigenvalues only or eigenvalues and eigenvectors
   44: *> of a full symmetric matrix (which was reduced to tridiagonal form)
   45: *> are desired.
   46: *>
   47: *>   T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out)
   48: *>
   49: *>    where Z = Q**T*u, u is a vector of length N with ones in the
   50: *>    CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
   51: *>
   52: *>    The eigenvectors of the original matrix are stored in Q, and the
   53: *>    eigenvalues are in D.  The algorithm consists of three stages:
   54: *>
   55: *>       The first stage consists of deflating the size of the problem
   56: *>       when there are multiple eigenvalues or if there is a zero in
   57: *>       the Z vector.  For each such occurrence the dimension of the
   58: *>       secular equation problem is reduced by one.  This stage is
   59: *>       performed by the routine DLAED2.
   60: *>
   61: *>       The second stage consists of calculating the updated
   62: *>       eigenvalues. This is done by finding the roots of the secular
   63: *>       equation via the routine DLAED4 (as called by DLAED3).
   64: *>       This routine also calculates the eigenvectors of the current
   65: *>       problem.
   66: *>
   67: *>       The final stage consists of computing the updated eigenvectors
   68: *>       directly using the updated eigenvalues.  The eigenvectors for
   69: *>       the current problem are multiplied with the eigenvectors from
   70: *>       the overall problem.
   71: *> \endverbatim
   72: *
   73: *  Arguments:
   74: *  ==========
   75: *
   76: *> \param[in] N
   77: *> \verbatim
   78: *>          N is INTEGER
   79: *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
   80: *> \endverbatim
   81: *>
   82: *> \param[in,out] D
   83: *> \verbatim
   84: *>          D is DOUBLE PRECISION array, dimension (N)
   85: *>         On entry, the eigenvalues of the rank-1-perturbed matrix.
   86: *>         On exit, the eigenvalues of the repaired matrix.
   87: *> \endverbatim
   88: *>
   89: *> \param[in,out] Q
   90: *> \verbatim
   91: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
   92: *>         On entry, the eigenvectors of the rank-1-perturbed matrix.
   93: *>         On exit, the eigenvectors of the repaired tridiagonal matrix.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] LDQ
   97: *> \verbatim
   98: *>          LDQ is INTEGER
   99: *>         The leading dimension of the array Q.  LDQ >= max(1,N).
  100: *> \endverbatim
  101: *>
  102: *> \param[in,out] INDXQ
  103: *> \verbatim
  104: *>          INDXQ is INTEGER array, dimension (N)
  105: *>         On entry, the permutation which separately sorts the two
  106: *>         subproblems in D into ascending order.
  107: *>         On exit, the permutation which will reintegrate the
  108: *>         subproblems back into sorted order,
  109: *>         i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] RHO
  113: *> \verbatim
  114: *>          RHO is DOUBLE PRECISION
  115: *>         The subdiagonal entry used to create the rank-1 modification.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] CUTPNT
  119: *> \verbatim
  120: *>          CUTPNT is INTEGER
  121: *>         The location of the last eigenvalue in the leading sub-matrix.
  122: *>         min(1,N) <= CUTPNT <= N/2.
  123: *> \endverbatim
  124: *>
  125: *> \param[out] WORK
  126: *> \verbatim
  127: *>          WORK is DOUBLE PRECISION array, dimension (4*N + N**2)
  128: *> \endverbatim
  129: *>
  130: *> \param[out] IWORK
  131: *> \verbatim
  132: *>          IWORK is INTEGER array, dimension (4*N)
  133: *> \endverbatim
  134: *>
  135: *> \param[out] INFO
  136: *> \verbatim
  137: *>          INFO is INTEGER
  138: *>          = 0:  successful exit.
  139: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  140: *>          > 0:  if INFO = 1, an eigenvalue did not converge
  141: *> \endverbatim
  142: *
  143: *  Authors:
  144: *  ========
  145: *
  146: *> \author Univ. of Tennessee
  147: *> \author Univ. of California Berkeley
  148: *> \author Univ. of Colorado Denver
  149: *> \author NAG Ltd.
  150: *
  151: *> \ingroup auxOTHERcomputational
  152: *
  153: *> \par Contributors:
  154: *  ==================
  155: *>
  156: *> Jeff Rutter, Computer Science Division, University of California
  157: *> at Berkeley, USA \n
  158: *>  Modified by Francoise Tisseur, University of Tennessee
  159: *>
  160: *  =====================================================================
  161:       SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,
  162:      $                   INFO )
  163: *
  164: *  -- LAPACK computational routine --
  165: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  166: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  167: *
  168: *     .. Scalar Arguments ..
  169:       INTEGER            CUTPNT, INFO, LDQ, N
  170:       DOUBLE PRECISION   RHO
  171: *     ..
  172: *     .. Array Arguments ..
  173:       INTEGER            INDXQ( * ), IWORK( * )
  174:       DOUBLE PRECISION   D( * ), Q( LDQ, * ), WORK( * )
  175: *     ..
  176: *
  177: *  =====================================================================
  178: *
  179: *     .. Local Scalars ..
  180:       INTEGER            COLTYP, I, IDLMDA, INDX, INDXC, INDXP, IQ2, IS,
  181:      $                   IW, IZ, K, N1, N2, ZPP1
  182: *     ..
  183: *     .. External Subroutines ..
  184:       EXTERNAL           DCOPY, DLAED2, DLAED3, DLAMRG, XERBLA
  185: *     ..
  186: *     .. Intrinsic Functions ..
  187:       INTRINSIC          MAX, MIN
  188: *     ..
  189: *     .. Executable Statements ..
  190: *
  191: *     Test the input parameters.
  192: *
  193:       INFO = 0
  194: *
  195:       IF( N.LT.0 ) THEN
  196:          INFO = -1
  197:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
  198:          INFO = -4
  199:       ELSE IF( MIN( 1, N / 2 ).GT.CUTPNT .OR. ( N / 2 ).LT.CUTPNT ) THEN
  200:          INFO = -7
  201:       END IF
  202:       IF( INFO.NE.0 ) THEN
  203:          CALL XERBLA( 'DLAED1', -INFO )
  204:          RETURN
  205:       END IF
  206: *
  207: *     Quick return if possible
  208: *
  209:       IF( N.EQ.0 )
  210:      $   RETURN
  211: *
  212: *     The following values are integer pointers which indicate
  213: *     the portion of the workspace
  214: *     used by a particular array in DLAED2 and DLAED3.
  215: *
  216:       IZ = 1
  217:       IDLMDA = IZ + N
  218:       IW = IDLMDA + N
  219:       IQ2 = IW + N
  220: *
  221:       INDX = 1
  222:       INDXC = INDX + N
  223:       COLTYP = INDXC + N
  224:       INDXP = COLTYP + N
  225: *
  226: *
  227: *     Form the z-vector which consists of the last row of Q_1 and the
  228: *     first row of Q_2.
  229: *
  230:       CALL DCOPY( CUTPNT, Q( CUTPNT, 1 ), LDQ, WORK( IZ ), 1 )
  231:       ZPP1 = CUTPNT + 1
  232:       CALL DCOPY( N-CUTPNT, Q( ZPP1, ZPP1 ), LDQ, WORK( IZ+CUTPNT ), 1 )
  233: *
  234: *     Deflate eigenvalues.
  235: *
  236:       CALL DLAED2( K, N, CUTPNT, D, Q, LDQ, INDXQ, RHO, WORK( IZ ),
  237:      $             WORK( IDLMDA ), WORK( IW ), WORK( IQ2 ),
  238:      $             IWORK( INDX ), IWORK( INDXC ), IWORK( INDXP ),
  239:      $             IWORK( COLTYP ), INFO )
  240: *
  241:       IF( INFO.NE.0 )
  242:      $   GO TO 20
  243: *
  244: *     Solve Secular Equation.
  245: *
  246:       IF( K.NE.0 ) THEN
  247:          IS = ( IWORK( COLTYP )+IWORK( COLTYP+1 ) )*CUTPNT +
  248:      $        ( IWORK( COLTYP+1 )+IWORK( COLTYP+2 ) )*( N-CUTPNT ) + IQ2
  249:          CALL DLAED3( K, N, CUTPNT, D, Q, LDQ, RHO, WORK( IDLMDA ),
  250:      $                WORK( IQ2 ), IWORK( INDXC ), IWORK( COLTYP ),
  251:      $                WORK( IW ), WORK( IS ), INFO )
  252:          IF( INFO.NE.0 )
  253:      $      GO TO 20
  254: *
  255: *     Prepare the INDXQ sorting permutation.
  256: *
  257:          N1 = K
  258:          N2 = N - K
  259:          CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
  260:       ELSE
  261:          DO 10 I = 1, N
  262:             INDXQ( I ) = I
  263:    10    CONTINUE
  264:       END IF
  265: *
  266:    20 CONTINUE
  267:       RETURN
  268: *
  269: *     End of DLAED1
  270: *
  271:       END

CVSweb interface <joel.bertrand@systella.fr>