Annotation of rpl/lapack/lapack/dlaed1.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b DLAED1
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLAED1 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed1.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed1.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed1.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,
        !            22: *                          INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            CUTPNT, INFO, LDQ, N
        !            26: *       DOUBLE PRECISION   RHO
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       INTEGER            INDXQ( * ), IWORK( * )
        !            30: *       DOUBLE PRECISION   D( * ), Q( LDQ, * ), WORK( * )
        !            31: *       ..
        !            32: *  
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *> DLAED1 computes the updated eigensystem of a diagonal
        !            40: *> matrix after modification by a rank-one symmetric matrix.  This
        !            41: *> routine is used only for the eigenproblem which requires all
        !            42: *> eigenvalues and eigenvectors of a tridiagonal matrix.  DLAED7 handles
        !            43: *> the case in which eigenvalues only or eigenvalues and eigenvectors
        !            44: *> of a full symmetric matrix (which was reduced to tridiagonal form)
        !            45: *> are desired.
        !            46: *>
        !            47: *>   T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out)
        !            48: *>
        !            49: *>    where Z = Q**T*u, u is a vector of length N with ones in the
        !            50: *>    CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
        !            51: *>
        !            52: *>    The eigenvectors of the original matrix are stored in Q, and the
        !            53: *>    eigenvalues are in D.  The algorithm consists of three stages:
        !            54: *>
        !            55: *>       The first stage consists of deflating the size of the problem
        !            56: *>       when there are multiple eigenvalues or if there is a zero in
        !            57: *>       the Z vector.  For each such occurence the dimension of the
        !            58: *>       secular equation problem is reduced by one.  This stage is
        !            59: *>       performed by the routine DLAED2.
        !            60: *>
        !            61: *>       The second stage consists of calculating the updated
        !            62: *>       eigenvalues. This is done by finding the roots of the secular
        !            63: *>       equation via the routine DLAED4 (as called by DLAED3).
        !            64: *>       This routine also calculates the eigenvectors of the current
        !            65: *>       problem.
        !            66: *>
        !            67: *>       The final stage consists of computing the updated eigenvectors
        !            68: *>       directly using the updated eigenvalues.  The eigenvectors for
        !            69: *>       the current problem are multiplied with the eigenvectors from
        !            70: *>       the overall problem.
        !            71: *> \endverbatim
        !            72: *
        !            73: *  Arguments:
        !            74: *  ==========
        !            75: *
        !            76: *> \param[in] N
        !            77: *> \verbatim
        !            78: *>          N is INTEGER
        !            79: *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
        !            80: *> \endverbatim
        !            81: *>
        !            82: *> \param[in,out] D
        !            83: *> \verbatim
        !            84: *>          D is DOUBLE PRECISION array, dimension (N)
        !            85: *>         On entry, the eigenvalues of the rank-1-perturbed matrix.
        !            86: *>         On exit, the eigenvalues of the repaired matrix.
        !            87: *> \endverbatim
        !            88: *>
        !            89: *> \param[in,out] Q
        !            90: *> \verbatim
        !            91: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
        !            92: *>         On entry, the eigenvectors of the rank-1-perturbed matrix.
        !            93: *>         On exit, the eigenvectors of the repaired tridiagonal matrix.
        !            94: *> \endverbatim
        !            95: *>
        !            96: *> \param[in] LDQ
        !            97: *> \verbatim
        !            98: *>          LDQ is INTEGER
        !            99: *>         The leading dimension of the array Q.  LDQ >= max(1,N).
        !           100: *> \endverbatim
        !           101: *>
        !           102: *> \param[in,out] INDXQ
        !           103: *> \verbatim
        !           104: *>          INDXQ is INTEGER array, dimension (N)
        !           105: *>         On entry, the permutation which separately sorts the two
        !           106: *>         subproblems in D into ascending order.
        !           107: *>         On exit, the permutation which will reintegrate the
        !           108: *>         subproblems back into sorted order,
        !           109: *>         i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
        !           110: *> \endverbatim
        !           111: *>
        !           112: *> \param[in] RHO
        !           113: *> \verbatim
        !           114: *>          RHO is DOUBLE PRECISION
        !           115: *>         The subdiagonal entry used to create the rank-1 modification.
        !           116: *> \endverbatim
        !           117: *>
        !           118: *> \param[in] CUTPNT
        !           119: *> \verbatim
        !           120: *>          CUTPNT is INTEGER
        !           121: *>         The location of the last eigenvalue in the leading sub-matrix.
        !           122: *>         min(1,N) <= CUTPNT <= N/2.
        !           123: *> \endverbatim
        !           124: *>
        !           125: *> \param[out] WORK
        !           126: *> \verbatim
        !           127: *>          WORK is DOUBLE PRECISION array, dimension (4*N + N**2)
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[out] IWORK
        !           131: *> \verbatim
        !           132: *>          IWORK is INTEGER array, dimension (4*N)
        !           133: *> \endverbatim
        !           134: *>
        !           135: *> \param[out] INFO
        !           136: *> \verbatim
        !           137: *>          INFO is INTEGER
        !           138: *>          = 0:  successful exit.
        !           139: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           140: *>          > 0:  if INFO = 1, an eigenvalue did not converge
        !           141: *> \endverbatim
        !           142: *
        !           143: *  Authors:
        !           144: *  ========
        !           145: *
        !           146: *> \author Univ. of Tennessee 
        !           147: *> \author Univ. of California Berkeley 
        !           148: *> \author Univ. of Colorado Denver 
        !           149: *> \author NAG Ltd. 
        !           150: *
        !           151: *> \date November 2011
        !           152: *
        !           153: *> \ingroup auxOTHERcomputational
        !           154: *
        !           155: *> \par Contributors:
        !           156: *  ==================
        !           157: *>
        !           158: *> Jeff Rutter, Computer Science Division, University of California
        !           159: *> at Berkeley, USA \n
        !           160: *>  Modified by Francoise Tisseur, University of Tennessee
        !           161: *>
        !           162: *  =====================================================================
1.1       bertrand  163:       SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,
                    164:      $                   INFO )
                    165: *
1.9     ! bertrand  166: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  167: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    168: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  169: *     November 2011
1.1       bertrand  170: *
                    171: *     .. Scalar Arguments ..
                    172:       INTEGER            CUTPNT, INFO, LDQ, N
                    173:       DOUBLE PRECISION   RHO
                    174: *     ..
                    175: *     .. Array Arguments ..
                    176:       INTEGER            INDXQ( * ), IWORK( * )
                    177:       DOUBLE PRECISION   D( * ), Q( LDQ, * ), WORK( * )
                    178: *     ..
                    179: *
                    180: *  =====================================================================
                    181: *
                    182: *     .. Local Scalars ..
                    183:       INTEGER            COLTYP, I, IDLMDA, INDX, INDXC, INDXP, IQ2, IS,
                    184:      $                   IW, IZ, K, N1, N2, ZPP1
                    185: *     ..
                    186: *     .. External Subroutines ..
                    187:       EXTERNAL           DCOPY, DLAED2, DLAED3, DLAMRG, XERBLA
                    188: *     ..
                    189: *     .. Intrinsic Functions ..
                    190:       INTRINSIC          MAX, MIN
                    191: *     ..
                    192: *     .. Executable Statements ..
                    193: *
                    194: *     Test the input parameters.
                    195: *
                    196:       INFO = 0
                    197: *
                    198:       IF( N.LT.0 ) THEN
                    199:          INFO = -1
                    200:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
                    201:          INFO = -4
                    202:       ELSE IF( MIN( 1, N / 2 ).GT.CUTPNT .OR. ( N / 2 ).LT.CUTPNT ) THEN
                    203:          INFO = -7
                    204:       END IF
                    205:       IF( INFO.NE.0 ) THEN
                    206:          CALL XERBLA( 'DLAED1', -INFO )
                    207:          RETURN
                    208:       END IF
                    209: *
                    210: *     Quick return if possible
                    211: *
                    212:       IF( N.EQ.0 )
                    213:      $   RETURN
                    214: *
                    215: *     The following values are integer pointers which indicate
                    216: *     the portion of the workspace
                    217: *     used by a particular array in DLAED2 and DLAED3.
                    218: *
                    219:       IZ = 1
                    220:       IDLMDA = IZ + N
                    221:       IW = IDLMDA + N
                    222:       IQ2 = IW + N
                    223: *
                    224:       INDX = 1
                    225:       INDXC = INDX + N
                    226:       COLTYP = INDXC + N
                    227:       INDXP = COLTYP + N
                    228: *
                    229: *
                    230: *     Form the z-vector which consists of the last row of Q_1 and the
                    231: *     first row of Q_2.
                    232: *
                    233:       CALL DCOPY( CUTPNT, Q( CUTPNT, 1 ), LDQ, WORK( IZ ), 1 )
                    234:       ZPP1 = CUTPNT + 1
                    235:       CALL DCOPY( N-CUTPNT, Q( ZPP1, ZPP1 ), LDQ, WORK( IZ+CUTPNT ), 1 )
                    236: *
                    237: *     Deflate eigenvalues.
                    238: *
                    239:       CALL DLAED2( K, N, CUTPNT, D, Q, LDQ, INDXQ, RHO, WORK( IZ ),
                    240:      $             WORK( IDLMDA ), WORK( IW ), WORK( IQ2 ),
                    241:      $             IWORK( INDX ), IWORK( INDXC ), IWORK( INDXP ),
                    242:      $             IWORK( COLTYP ), INFO )
                    243: *
                    244:       IF( INFO.NE.0 )
                    245:      $   GO TO 20
                    246: *
                    247: *     Solve Secular Equation.
                    248: *
                    249:       IF( K.NE.0 ) THEN
                    250:          IS = ( IWORK( COLTYP )+IWORK( COLTYP+1 ) )*CUTPNT +
                    251:      $        ( IWORK( COLTYP+1 )+IWORK( COLTYP+2 ) )*( N-CUTPNT ) + IQ2
                    252:          CALL DLAED3( K, N, CUTPNT, D, Q, LDQ, RHO, WORK( IDLMDA ),
                    253:      $                WORK( IQ2 ), IWORK( INDXC ), IWORK( COLTYP ),
                    254:      $                WORK( IW ), WORK( IS ), INFO )
                    255:          IF( INFO.NE.0 )
                    256:      $      GO TO 20
                    257: *
                    258: *     Prepare the INDXQ sorting permutation.
                    259: *
                    260:          N1 = K
                    261:          N2 = N - K
                    262:          CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
                    263:       ELSE
                    264:          DO 10 I = 1, N
                    265:             INDXQ( I ) = I
                    266:    10    CONTINUE
                    267:       END IF
                    268: *
                    269:    20 CONTINUE
                    270:       RETURN
                    271: *
                    272: *     End of DLAED1
                    273: *
                    274:       END

CVSweb interface <joel.bertrand@systella.fr>