Annotation of rpl/lapack/lapack/dlaed1.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,
        !             2:      $                   INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            CUTPNT, INFO, LDQ, N
        !            11:       DOUBLE PRECISION   RHO
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            INDXQ( * ), IWORK( * )
        !            15:       DOUBLE PRECISION   D( * ), Q( LDQ, * ), WORK( * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  DLAED1 computes the updated eigensystem of a diagonal
        !            22: *  matrix after modification by a rank-one symmetric matrix.  This
        !            23: *  routine is used only for the eigenproblem which requires all
        !            24: *  eigenvalues and eigenvectors of a tridiagonal matrix.  DLAED7 handles
        !            25: *  the case in which eigenvalues only or eigenvalues and eigenvectors
        !            26: *  of a full symmetric matrix (which was reduced to tridiagonal form)
        !            27: *  are desired.
        !            28: *
        !            29: *    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
        !            30: *
        !            31: *     where Z = Q'u, u is a vector of length N with ones in the
        !            32: *     CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
        !            33: *
        !            34: *     The eigenvectors of the original matrix are stored in Q, and the
        !            35: *     eigenvalues are in D.  The algorithm consists of three stages:
        !            36: *
        !            37: *        The first stage consists of deflating the size of the problem
        !            38: *        when there are multiple eigenvalues or if there is a zero in
        !            39: *        the Z vector.  For each such occurence the dimension of the
        !            40: *        secular equation problem is reduced by one.  This stage is
        !            41: *        performed by the routine DLAED2.
        !            42: *
        !            43: *        The second stage consists of calculating the updated
        !            44: *        eigenvalues. This is done by finding the roots of the secular
        !            45: *        equation via the routine DLAED4 (as called by DLAED3).
        !            46: *        This routine also calculates the eigenvectors of the current
        !            47: *        problem.
        !            48: *
        !            49: *        The final stage consists of computing the updated eigenvectors
        !            50: *        directly using the updated eigenvalues.  The eigenvectors for
        !            51: *        the current problem are multiplied with the eigenvectors from
        !            52: *        the overall problem.
        !            53: *
        !            54: *  Arguments
        !            55: *  =========
        !            56: *
        !            57: *  N      (input) INTEGER
        !            58: *         The dimension of the symmetric tridiagonal matrix.  N >= 0.
        !            59: *
        !            60: *  D      (input/output) DOUBLE PRECISION array, dimension (N)
        !            61: *         On entry, the eigenvalues of the rank-1-perturbed matrix.
        !            62: *         On exit, the eigenvalues of the repaired matrix.
        !            63: *
        !            64: *  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
        !            65: *         On entry, the eigenvectors of the rank-1-perturbed matrix.
        !            66: *         On exit, the eigenvectors of the repaired tridiagonal matrix.
        !            67: *
        !            68: *  LDQ    (input) INTEGER
        !            69: *         The leading dimension of the array Q.  LDQ >= max(1,N).
        !            70: *
        !            71: *  INDXQ  (input/output) INTEGER array, dimension (N)
        !            72: *         On entry, the permutation which separately sorts the two
        !            73: *         subproblems in D into ascending order.
        !            74: *         On exit, the permutation which will reintegrate the
        !            75: *         subproblems back into sorted order,
        !            76: *         i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
        !            77: *
        !            78: *  RHO    (input) DOUBLE PRECISION
        !            79: *         The subdiagonal entry used to create the rank-1 modification.
        !            80: *
        !            81: *  CUTPNT (input) INTEGER
        !            82: *         The location of the last eigenvalue in the leading sub-matrix.
        !            83: *         min(1,N) <= CUTPNT <= N/2.
        !            84: *
        !            85: *  WORK   (workspace) DOUBLE PRECISION array, dimension (4*N + N**2)
        !            86: *
        !            87: *  IWORK  (workspace) INTEGER array, dimension (4*N)
        !            88: *
        !            89: *  INFO   (output) INTEGER
        !            90: *          = 0:  successful exit.
        !            91: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !            92: *          > 0:  if INFO = 1, an eigenvalue did not converge
        !            93: *
        !            94: *  Further Details
        !            95: *  ===============
        !            96: *
        !            97: *  Based on contributions by
        !            98: *     Jeff Rutter, Computer Science Division, University of California
        !            99: *     at Berkeley, USA
        !           100: *  Modified by Francoise Tisseur, University of Tennessee.
        !           101: *
        !           102: *  =====================================================================
        !           103: *
        !           104: *     .. Local Scalars ..
        !           105:       INTEGER            COLTYP, I, IDLMDA, INDX, INDXC, INDXP, IQ2, IS,
        !           106:      $                   IW, IZ, K, N1, N2, ZPP1
        !           107: *     ..
        !           108: *     .. External Subroutines ..
        !           109:       EXTERNAL           DCOPY, DLAED2, DLAED3, DLAMRG, XERBLA
        !           110: *     ..
        !           111: *     .. Intrinsic Functions ..
        !           112:       INTRINSIC          MAX, MIN
        !           113: *     ..
        !           114: *     .. Executable Statements ..
        !           115: *
        !           116: *     Test the input parameters.
        !           117: *
        !           118:       INFO = 0
        !           119: *
        !           120:       IF( N.LT.0 ) THEN
        !           121:          INFO = -1
        !           122:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
        !           123:          INFO = -4
        !           124:       ELSE IF( MIN( 1, N / 2 ).GT.CUTPNT .OR. ( N / 2 ).LT.CUTPNT ) THEN
        !           125:          INFO = -7
        !           126:       END IF
        !           127:       IF( INFO.NE.0 ) THEN
        !           128:          CALL XERBLA( 'DLAED1', -INFO )
        !           129:          RETURN
        !           130:       END IF
        !           131: *
        !           132: *     Quick return if possible
        !           133: *
        !           134:       IF( N.EQ.0 )
        !           135:      $   RETURN
        !           136: *
        !           137: *     The following values are integer pointers which indicate
        !           138: *     the portion of the workspace
        !           139: *     used by a particular array in DLAED2 and DLAED3.
        !           140: *
        !           141:       IZ = 1
        !           142:       IDLMDA = IZ + N
        !           143:       IW = IDLMDA + N
        !           144:       IQ2 = IW + N
        !           145: *
        !           146:       INDX = 1
        !           147:       INDXC = INDX + N
        !           148:       COLTYP = INDXC + N
        !           149:       INDXP = COLTYP + N
        !           150: *
        !           151: *
        !           152: *     Form the z-vector which consists of the last row of Q_1 and the
        !           153: *     first row of Q_2.
        !           154: *
        !           155:       CALL DCOPY( CUTPNT, Q( CUTPNT, 1 ), LDQ, WORK( IZ ), 1 )
        !           156:       ZPP1 = CUTPNT + 1
        !           157:       CALL DCOPY( N-CUTPNT, Q( ZPP1, ZPP1 ), LDQ, WORK( IZ+CUTPNT ), 1 )
        !           158: *
        !           159: *     Deflate eigenvalues.
        !           160: *
        !           161:       CALL DLAED2( K, N, CUTPNT, D, Q, LDQ, INDXQ, RHO, WORK( IZ ),
        !           162:      $             WORK( IDLMDA ), WORK( IW ), WORK( IQ2 ),
        !           163:      $             IWORK( INDX ), IWORK( INDXC ), IWORK( INDXP ),
        !           164:      $             IWORK( COLTYP ), INFO )
        !           165: *
        !           166:       IF( INFO.NE.0 )
        !           167:      $   GO TO 20
        !           168: *
        !           169: *     Solve Secular Equation.
        !           170: *
        !           171:       IF( K.NE.0 ) THEN
        !           172:          IS = ( IWORK( COLTYP )+IWORK( COLTYP+1 ) )*CUTPNT +
        !           173:      $        ( IWORK( COLTYP+1 )+IWORK( COLTYP+2 ) )*( N-CUTPNT ) + IQ2
        !           174:          CALL DLAED3( K, N, CUTPNT, D, Q, LDQ, RHO, WORK( IDLMDA ),
        !           175:      $                WORK( IQ2 ), IWORK( INDXC ), IWORK( COLTYP ),
        !           176:      $                WORK( IW ), WORK( IS ), INFO )
        !           177:          IF( INFO.NE.0 )
        !           178:      $      GO TO 20
        !           179: *
        !           180: *     Prepare the INDXQ sorting permutation.
        !           181: *
        !           182:          N1 = K
        !           183:          N2 = N - K
        !           184:          CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
        !           185:       ELSE
        !           186:          DO 10 I = 1, N
        !           187:             INDXQ( I ) = I
        !           188:    10    CONTINUE
        !           189:       END IF
        !           190: *
        !           191:    20 CONTINUE
        !           192:       RETURN
        !           193: *
        !           194: *     End of DLAED1
        !           195: *
        !           196:       END

CVSweb interface <joel.bertrand@systella.fr>