--- rpl/lapack/lapack/dlaed1.f 2011/07/22 07:38:06 1.8 +++ rpl/lapack/lapack/dlaed1.f 2011/11/21 20:42:54 1.9 @@ -1,10 +1,172 @@ +*> \brief \b DLAED1 +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLAED1 + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK, +* INFO ) +* +* .. Scalar Arguments .. +* INTEGER CUTPNT, INFO, LDQ, N +* DOUBLE PRECISION RHO +* .. +* .. Array Arguments .. +* INTEGER INDXQ( * ), IWORK( * ) +* DOUBLE PRECISION D( * ), Q( LDQ, * ), WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLAED1 computes the updated eigensystem of a diagonal +*> matrix after modification by a rank-one symmetric matrix. This +*> routine is used only for the eigenproblem which requires all +*> eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles +*> the case in which eigenvalues only or eigenvalues and eigenvectors +*> of a full symmetric matrix (which was reduced to tridiagonal form) +*> are desired. +*> +*> T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out) +*> +*> where Z = Q**T*u, u is a vector of length N with ones in the +*> CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. +*> +*> The eigenvectors of the original matrix are stored in Q, and the +*> eigenvalues are in D. The algorithm consists of three stages: +*> +*> The first stage consists of deflating the size of the problem +*> when there are multiple eigenvalues or if there is a zero in +*> the Z vector. For each such occurence the dimension of the +*> secular equation problem is reduced by one. This stage is +*> performed by the routine DLAED2. +*> +*> The second stage consists of calculating the updated +*> eigenvalues. This is done by finding the roots of the secular +*> equation via the routine DLAED4 (as called by DLAED3). +*> This routine also calculates the eigenvectors of the current +*> problem. +*> +*> The final stage consists of computing the updated eigenvectors +*> directly using the updated eigenvalues. The eigenvectors for +*> the current problem are multiplied with the eigenvectors from +*> the overall problem. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The dimension of the symmetric tridiagonal matrix. N >= 0. +*> \endverbatim +*> +*> \param[in,out] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> On entry, the eigenvalues of the rank-1-perturbed matrix. +*> On exit, the eigenvalues of the repaired matrix. +*> \endverbatim +*> +*> \param[in,out] Q +*> \verbatim +*> Q is DOUBLE PRECISION array, dimension (LDQ,N) +*> On entry, the eigenvectors of the rank-1-perturbed matrix. +*> On exit, the eigenvectors of the repaired tridiagonal matrix. +*> \endverbatim +*> +*> \param[in] LDQ +*> \verbatim +*> LDQ is INTEGER +*> The leading dimension of the array Q. LDQ >= max(1,N). +*> \endverbatim +*> +*> \param[in,out] INDXQ +*> \verbatim +*> INDXQ is INTEGER array, dimension (N) +*> On entry, the permutation which separately sorts the two +*> subproblems in D into ascending order. +*> On exit, the permutation which will reintegrate the +*> subproblems back into sorted order, +*> i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. +*> \endverbatim +*> +*> \param[in] RHO +*> \verbatim +*> RHO is DOUBLE PRECISION +*> The subdiagonal entry used to create the rank-1 modification. +*> \endverbatim +*> +*> \param[in] CUTPNT +*> \verbatim +*> CUTPNT is INTEGER +*> The location of the last eigenvalue in the leading sub-matrix. +*> min(1,N) <= CUTPNT <= N/2. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (4*N + N**2) +*> \endverbatim +*> +*> \param[out] IWORK +*> \verbatim +*> IWORK is INTEGER array, dimension (4*N) +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit. +*> < 0: if INFO = -i, the i-th argument had an illegal value. +*> > 0: if INFO = 1, an eigenvalue did not converge +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERcomputational +* +*> \par Contributors: +* ================== +*> +*> Jeff Rutter, Computer Science Division, University of California +*> at Berkeley, USA \n +*> Modified by Francoise Tisseur, University of Tennessee +*> +* ===================================================================== SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK, $ INFO ) * -* -- LAPACK routine (version 3.2) -- +* -- LAPACK computational routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* November 2006 +* November 2011 * * .. Scalar Arguments .. INTEGER CUTPNT, INFO, LDQ, N @@ -15,90 +177,6 @@ DOUBLE PRECISION D( * ), Q( LDQ, * ), WORK( * ) * .. * -* Purpose -* ======= -* -* DLAED1 computes the updated eigensystem of a diagonal -* matrix after modification by a rank-one symmetric matrix. This -* routine is used only for the eigenproblem which requires all -* eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles -* the case in which eigenvalues only or eigenvalues and eigenvectors -* of a full symmetric matrix (which was reduced to tridiagonal form) -* are desired. -* -* T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out) -* -* where Z = Q**T*u, u is a vector of length N with ones in the -* CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. -* -* The eigenvectors of the original matrix are stored in Q, and the -* eigenvalues are in D. The algorithm consists of three stages: -* -* The first stage consists of deflating the size of the problem -* when there are multiple eigenvalues or if there is a zero in -* the Z vector. For each such occurence the dimension of the -* secular equation problem is reduced by one. This stage is -* performed by the routine DLAED2. -* -* The second stage consists of calculating the updated -* eigenvalues. This is done by finding the roots of the secular -* equation via the routine DLAED4 (as called by DLAED3). -* This routine also calculates the eigenvectors of the current -* problem. -* -* The final stage consists of computing the updated eigenvectors -* directly using the updated eigenvalues. The eigenvectors for -* the current problem are multiplied with the eigenvectors from -* the overall problem. -* -* Arguments -* ========= -* -* N (input) INTEGER -* The dimension of the symmetric tridiagonal matrix. N >= 0. -* -* D (input/output) DOUBLE PRECISION array, dimension (N) -* On entry, the eigenvalues of the rank-1-perturbed matrix. -* On exit, the eigenvalues of the repaired matrix. -* -* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) -* On entry, the eigenvectors of the rank-1-perturbed matrix. -* On exit, the eigenvectors of the repaired tridiagonal matrix. -* -* LDQ (input) INTEGER -* The leading dimension of the array Q. LDQ >= max(1,N). -* -* INDXQ (input/output) INTEGER array, dimension (N) -* On entry, the permutation which separately sorts the two -* subproblems in D into ascending order. -* On exit, the permutation which will reintegrate the -* subproblems back into sorted order, -* i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. -* -* RHO (input) DOUBLE PRECISION -* The subdiagonal entry used to create the rank-1 modification. -* -* CUTPNT (input) INTEGER -* The location of the last eigenvalue in the leading sub-matrix. -* min(1,N) <= CUTPNT <= N/2. -* -* WORK (workspace) DOUBLE PRECISION array, dimension (4*N + N**2) -* -* IWORK (workspace) INTEGER array, dimension (4*N) -* -* INFO (output) INTEGER -* = 0: successful exit. -* < 0: if INFO = -i, the i-th argument had an illegal value. -* > 0: if INFO = 1, an eigenvalue did not converge -* -* Further Details -* =============== -* -* Based on contributions by -* Jeff Rutter, Computer Science Division, University of California -* at Berkeley, USA -* Modified by Francoise Tisseur, University of Tennessee. -* * ===================================================================== * * .. Local Scalars ..