Annotation of rpl/lapack/lapack/dlae2.f, revision 1.18

1.11      bertrand    1: *> \brief \b DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DLAE2 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlae2.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlae2.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlae2.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLAE2( A, B, C, RT1, RT2 )
1.15      bertrand   22: *
1.8       bertrand   23: *       .. Scalar Arguments ..
                     24: *       DOUBLE PRECISION   A, B, C, RT1, RT2
                     25: *       ..
1.15      bertrand   26: *
1.8       bertrand   27: *
                     28: *> \par Purpose:
                     29: *  =============
                     30: *>
                     31: *> \verbatim
                     32: *>
                     33: *> DLAE2  computes the eigenvalues of a 2-by-2 symmetric matrix
                     34: *>    [  A   B  ]
                     35: *>    [  B   C  ].
                     36: *> On return, RT1 is the eigenvalue of larger absolute value, and RT2
                     37: *> is the eigenvalue of smaller absolute value.
                     38: *> \endverbatim
                     39: *
                     40: *  Arguments:
                     41: *  ==========
                     42: *
                     43: *> \param[in] A
                     44: *> \verbatim
                     45: *>          A is DOUBLE PRECISION
                     46: *>          The (1,1) element of the 2-by-2 matrix.
                     47: *> \endverbatim
                     48: *>
                     49: *> \param[in] B
                     50: *> \verbatim
                     51: *>          B is DOUBLE PRECISION
                     52: *>          The (1,2) and (2,1) elements of the 2-by-2 matrix.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] C
                     56: *> \verbatim
                     57: *>          C is DOUBLE PRECISION
                     58: *>          The (2,2) element of the 2-by-2 matrix.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[out] RT1
                     62: *> \verbatim
                     63: *>          RT1 is DOUBLE PRECISION
                     64: *>          The eigenvalue of larger absolute value.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[out] RT2
                     68: *> \verbatim
                     69: *>          RT2 is DOUBLE PRECISION
                     70: *>          The eigenvalue of smaller absolute value.
                     71: *> \endverbatim
                     72: *
                     73: *  Authors:
                     74: *  ========
                     75: *
1.15      bertrand   76: *> \author Univ. of Tennessee
                     77: *> \author Univ. of California Berkeley
                     78: *> \author Univ. of Colorado Denver
                     79: *> \author NAG Ltd.
1.8       bertrand   80: *
1.15      bertrand   81: *> \ingroup OTHERauxiliary
1.8       bertrand   82: *
                     83: *> \par Further Details:
                     84: *  =====================
                     85: *>
                     86: *> \verbatim
                     87: *>
                     88: *>  RT1 is accurate to a few ulps barring over/underflow.
                     89: *>
                     90: *>  RT2 may be inaccurate if there is massive cancellation in the
                     91: *>  determinant A*C-B*B; higher precision or correctly rounded or
                     92: *>  correctly truncated arithmetic would be needed to compute RT2
                     93: *>  accurately in all cases.
                     94: *>
                     95: *>  Overflow is possible only if RT1 is within a factor of 5 of overflow.
                     96: *>  Underflow is harmless if the input data is 0 or exceeds
                     97: *>     underflow_threshold / macheps.
                     98: *> \endverbatim
                     99: *>
                    100: *  =====================================================================
1.1       bertrand  101:       SUBROUTINE DLAE2( A, B, C, RT1, RT2 )
                    102: *
1.18    ! bertrand  103: *  -- LAPACK auxiliary routine --
1.1       bertrand  104: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    105: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    106: *
                    107: *     .. Scalar Arguments ..
                    108:       DOUBLE PRECISION   A, B, C, RT1, RT2
                    109: *     ..
                    110: *
                    111: * =====================================================================
                    112: *
                    113: *     .. Parameters ..
                    114:       DOUBLE PRECISION   ONE
                    115:       PARAMETER          ( ONE = 1.0D0 )
                    116:       DOUBLE PRECISION   TWO
                    117:       PARAMETER          ( TWO = 2.0D0 )
                    118:       DOUBLE PRECISION   ZERO
                    119:       PARAMETER          ( ZERO = 0.0D0 )
                    120:       DOUBLE PRECISION   HALF
                    121:       PARAMETER          ( HALF = 0.5D0 )
                    122: *     ..
                    123: *     .. Local Scalars ..
                    124:       DOUBLE PRECISION   AB, ACMN, ACMX, ADF, DF, RT, SM, TB
                    125: *     ..
                    126: *     .. Intrinsic Functions ..
                    127:       INTRINSIC          ABS, SQRT
                    128: *     ..
                    129: *     .. Executable Statements ..
                    130: *
                    131: *     Compute the eigenvalues
                    132: *
                    133:       SM = A + C
                    134:       DF = A - C
                    135:       ADF = ABS( DF )
                    136:       TB = B + B
                    137:       AB = ABS( TB )
                    138:       IF( ABS( A ).GT.ABS( C ) ) THEN
                    139:          ACMX = A
                    140:          ACMN = C
                    141:       ELSE
                    142:          ACMX = C
                    143:          ACMN = A
                    144:       END IF
                    145:       IF( ADF.GT.AB ) THEN
                    146:          RT = ADF*SQRT( ONE+( AB / ADF )**2 )
                    147:       ELSE IF( ADF.LT.AB ) THEN
                    148:          RT = AB*SQRT( ONE+( ADF / AB )**2 )
                    149:       ELSE
                    150: *
                    151: *        Includes case AB=ADF=0
                    152: *
                    153:          RT = AB*SQRT( TWO )
                    154:       END IF
                    155:       IF( SM.LT.ZERO ) THEN
                    156:          RT1 = HALF*( SM-RT )
                    157: *
                    158: *        Order of execution important.
                    159: *        To get fully accurate smaller eigenvalue,
                    160: *        next line needs to be executed in higher precision.
                    161: *
                    162:          RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
                    163:       ELSE IF( SM.GT.ZERO ) THEN
                    164:          RT1 = HALF*( SM+RT )
                    165: *
                    166: *        Order of execution important.
                    167: *        To get fully accurate smaller eigenvalue,
                    168: *        next line needs to be executed in higher precision.
                    169: *
                    170:          RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
                    171:       ELSE
                    172: *
                    173: *        Includes case RT1 = RT2 = 0
                    174: *
                    175:          RT1 = HALF*RT
                    176:          RT2 = -HALF*RT
                    177:       END IF
                    178:       RETURN
                    179: *
                    180: *     End of DLAE2
                    181: *
                    182:       END

CVSweb interface <joel.bertrand@systella.fr>