File:  [local] / rpl / lapack / lapack / dlabrd.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:53 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLABRD + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlabrd.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlabrd.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlabrd.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
   22: *                          LDY )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            LDA, LDX, LDY, M, N, NB
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
   29: *      $                   TAUQ( * ), X( LDX, * ), Y( LDY, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DLABRD reduces the first NB rows and columns of a real general
   39: *> m by n matrix A to upper or lower bidiagonal form by an orthogonal
   40: *> transformation Q**T * A * P, and returns the matrices X and Y which
   41: *> are needed to apply the transformation to the unreduced part of A.
   42: *>
   43: *> If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
   44: *> bidiagonal form.
   45: *>
   46: *> This is an auxiliary routine called by DGEBRD
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] M
   53: *> \verbatim
   54: *>          M is INTEGER
   55: *>          The number of rows in the matrix A.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The number of columns in the matrix A.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] NB
   65: *> \verbatim
   66: *>          NB is INTEGER
   67: *>          The number of leading rows and columns of A to be reduced.
   68: *> \endverbatim
   69: *>
   70: *> \param[in,out] A
   71: *> \verbatim
   72: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   73: *>          On entry, the m by n general matrix to be reduced.
   74: *>          On exit, the first NB rows and columns of the matrix are
   75: *>          overwritten; the rest of the array is unchanged.
   76: *>          If m >= n, elements on and below the diagonal in the first NB
   77: *>            columns, with the array TAUQ, represent the orthogonal
   78: *>            matrix Q as a product of elementary reflectors; and
   79: *>            elements above the diagonal in the first NB rows, with the
   80: *>            array TAUP, represent the orthogonal matrix P as a product
   81: *>            of elementary reflectors.
   82: *>          If m < n, elements below the diagonal in the first NB
   83: *>            columns, with the array TAUQ, represent the orthogonal
   84: *>            matrix Q as a product of elementary reflectors, and
   85: *>            elements on and above the diagonal in the first NB rows,
   86: *>            with the array TAUP, represent the orthogonal matrix P as
   87: *>            a product of elementary reflectors.
   88: *>          See Further Details.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] LDA
   92: *> \verbatim
   93: *>          LDA is INTEGER
   94: *>          The leading dimension of the array A.  LDA >= max(1,M).
   95: *> \endverbatim
   96: *>
   97: *> \param[out] D
   98: *> \verbatim
   99: *>          D is DOUBLE PRECISION array, dimension (NB)
  100: *>          The diagonal elements of the first NB rows and columns of
  101: *>          the reduced matrix.  D(i) = A(i,i).
  102: *> \endverbatim
  103: *>
  104: *> \param[out] E
  105: *> \verbatim
  106: *>          E is DOUBLE PRECISION array, dimension (NB)
  107: *>          The off-diagonal elements of the first NB rows and columns of
  108: *>          the reduced matrix.
  109: *> \endverbatim
  110: *>
  111: *> \param[out] TAUQ
  112: *> \verbatim
  113: *>          TAUQ is DOUBLE PRECISION array, dimension (NB)
  114: *>          The scalar factors of the elementary reflectors which
  115: *>          represent the orthogonal matrix Q. See Further Details.
  116: *> \endverbatim
  117: *>
  118: *> \param[out] TAUP
  119: *> \verbatim
  120: *>          TAUP is DOUBLE PRECISION array, dimension (NB)
  121: *>          The scalar factors of the elementary reflectors which
  122: *>          represent the orthogonal matrix P. See Further Details.
  123: *> \endverbatim
  124: *>
  125: *> \param[out] X
  126: *> \verbatim
  127: *>          X is DOUBLE PRECISION array, dimension (LDX,NB)
  128: *>          The m-by-nb matrix X required to update the unreduced part
  129: *>          of A.
  130: *> \endverbatim
  131: *>
  132: *> \param[in] LDX
  133: *> \verbatim
  134: *>          LDX is INTEGER
  135: *>          The leading dimension of the array X. LDX >= max(1,M).
  136: *> \endverbatim
  137: *>
  138: *> \param[out] Y
  139: *> \verbatim
  140: *>          Y is DOUBLE PRECISION array, dimension (LDY,NB)
  141: *>          The n-by-nb matrix Y required to update the unreduced part
  142: *>          of A.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] LDY
  146: *> \verbatim
  147: *>          LDY is INTEGER
  148: *>          The leading dimension of the array Y. LDY >= max(1,N).
  149: *> \endverbatim
  150: *
  151: *  Authors:
  152: *  ========
  153: *
  154: *> \author Univ. of Tennessee
  155: *> \author Univ. of California Berkeley
  156: *> \author Univ. of Colorado Denver
  157: *> \author NAG Ltd.
  158: *
  159: *> \ingroup doubleOTHERauxiliary
  160: *
  161: *> \par Further Details:
  162: *  =====================
  163: *>
  164: *> \verbatim
  165: *>
  166: *>  The matrices Q and P are represented as products of elementary
  167: *>  reflectors:
  168: *>
  169: *>     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
  170: *>
  171: *>  Each H(i) and G(i) has the form:
  172: *>
  173: *>     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T
  174: *>
  175: *>  where tauq and taup are real scalars, and v and u are real vectors.
  176: *>
  177: *>  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
  178: *>  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
  179: *>  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
  180: *>
  181: *>  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
  182: *>  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
  183: *>  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
  184: *>
  185: *>  The elements of the vectors v and u together form the m-by-nb matrix
  186: *>  V and the nb-by-n matrix U**T which are needed, with X and Y, to apply
  187: *>  the transformation to the unreduced part of the matrix, using a block
  188: *>  update of the form:  A := A - V*Y**T - X*U**T.
  189: *>
  190: *>  The contents of A on exit are illustrated by the following examples
  191: *>  with nb = 2:
  192: *>
  193: *>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
  194: *>
  195: *>    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
  196: *>    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
  197: *>    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
  198: *>    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
  199: *>    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
  200: *>    (  v1  v2  a   a   a  )
  201: *>
  202: *>  where a denotes an element of the original matrix which is unchanged,
  203: *>  vi denotes an element of the vector defining H(i), and ui an element
  204: *>  of the vector defining G(i).
  205: *> \endverbatim
  206: *>
  207: *  =====================================================================
  208:       SUBROUTINE DLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
  209:      $                   LDY )
  210: *
  211: *  -- LAPACK auxiliary routine --
  212: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  213: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  214: *
  215: *     .. Scalar Arguments ..
  216:       INTEGER            LDA, LDX, LDY, M, N, NB
  217: *     ..
  218: *     .. Array Arguments ..
  219:       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
  220:      $                   TAUQ( * ), X( LDX, * ), Y( LDY, * )
  221: *     ..
  222: *
  223: *  =====================================================================
  224: *
  225: *     .. Parameters ..
  226:       DOUBLE PRECISION   ZERO, ONE
  227:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  228: *     ..
  229: *     .. Local Scalars ..
  230:       INTEGER            I
  231: *     ..
  232: *     .. External Subroutines ..
  233:       EXTERNAL           DGEMV, DLARFG, DSCAL
  234: *     ..
  235: *     .. Intrinsic Functions ..
  236:       INTRINSIC          MIN
  237: *     ..
  238: *     .. Executable Statements ..
  239: *
  240: *     Quick return if possible
  241: *
  242:       IF( M.LE.0 .OR. N.LE.0 )
  243:      $   RETURN
  244: *
  245:       IF( M.GE.N ) THEN
  246: *
  247: *        Reduce to upper bidiagonal form
  248: *
  249:          DO 10 I = 1, NB
  250: *
  251: *           Update A(i:m,i)
  252: *
  253:             CALL DGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
  254:      $                  LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
  255:             CALL DGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
  256:      $                  LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
  257: *
  258: *           Generate reflection Q(i) to annihilate A(i+1:m,i)
  259: *
  260:             CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
  261:      $                   TAUQ( I ) )
  262:             D( I ) = A( I, I )
  263:             IF( I.LT.N ) THEN
  264:                A( I, I ) = ONE
  265: *
  266: *              Compute Y(i+1:n,i)
  267: *
  268:                CALL DGEMV( 'Transpose', M-I+1, N-I, ONE, A( I, I+1 ),
  269:      $                     LDA, A( I, I ), 1, ZERO, Y( I+1, I ), 1 )
  270:                CALL DGEMV( 'Transpose', M-I+1, I-1, ONE, A( I, 1 ), LDA,
  271:      $                     A( I, I ), 1, ZERO, Y( 1, I ), 1 )
  272:                CALL DGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
  273:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
  274:                CALL DGEMV( 'Transpose', M-I+1, I-1, ONE, X( I, 1 ), LDX,
  275:      $                     A( I, I ), 1, ZERO, Y( 1, I ), 1 )
  276:                CALL DGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ),
  277:      $                     LDA, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
  278:                CALL DSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
  279: *
  280: *              Update A(i,i+1:n)
  281: *
  282:                CALL DGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
  283:      $                     LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
  284:                CALL DGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ),
  285:      $                     LDA, X( I, 1 ), LDX, ONE, A( I, I+1 ), LDA )
  286: *
  287: *              Generate reflection P(i) to annihilate A(i,i+2:n)
  288: *
  289:                CALL DLARFG( N-I, A( I, I+1 ), A( I, MIN( I+2, N ) ),
  290:      $                      LDA, TAUP( I ) )
  291:                E( I ) = A( I, I+1 )
  292:                A( I, I+1 ) = ONE
  293: *
  294: *              Compute X(i+1:m,i)
  295: *
  296:                CALL DGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
  297:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
  298:                CALL DGEMV( 'Transpose', N-I, I, ONE, Y( I+1, 1 ), LDY,
  299:      $                     A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
  300:                CALL DGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
  301:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
  302:                CALL DGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
  303:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
  304:                CALL DGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
  305:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
  306:                CALL DSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
  307:             END IF
  308:    10    CONTINUE
  309:       ELSE
  310: *
  311: *        Reduce to lower bidiagonal form
  312: *
  313:          DO 20 I = 1, NB
  314: *
  315: *           Update A(i,i:n)
  316: *
  317:             CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
  318:      $                  LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
  319:             CALL DGEMV( 'Transpose', I-1, N-I+1, -ONE, A( 1, I ), LDA,
  320:      $                  X( I, 1 ), LDX, ONE, A( I, I ), LDA )
  321: *
  322: *           Generate reflection P(i) to annihilate A(i,i+1:n)
  323: *
  324:             CALL DLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA,
  325:      $                   TAUP( I ) )
  326:             D( I ) = A( I, I )
  327:             IF( I.LT.M ) THEN
  328:                A( I, I ) = ONE
  329: *
  330: *              Compute X(i+1:m,i)
  331: *
  332:                CALL DGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
  333:      $                     LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
  334:                CALL DGEMV( 'Transpose', N-I+1, I-1, ONE, Y( I, 1 ), LDY,
  335:      $                     A( I, I ), LDA, ZERO, X( 1, I ), 1 )
  336:                CALL DGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
  337:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
  338:                CALL DGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
  339:      $                     LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
  340:                CALL DGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
  341:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
  342:                CALL DSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
  343: *
  344: *              Update A(i+1:m,i)
  345: *
  346:                CALL DGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
  347:      $                     LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
  348:                CALL DGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
  349:      $                     LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
  350: *
  351: *              Generate reflection Q(i) to annihilate A(i+2:m,i)
  352: *
  353:                CALL DLARFG( M-I, A( I+1, I ), A( MIN( I+2, M ), I ), 1,
  354:      $                      TAUQ( I ) )
  355:                E( I ) = A( I+1, I )
  356:                A( I+1, I ) = ONE
  357: *
  358: *              Compute Y(i+1:n,i)
  359: *
  360:                CALL DGEMV( 'Transpose', M-I, N-I, ONE, A( I+1, I+1 ),
  361:      $                     LDA, A( I+1, I ), 1, ZERO, Y( I+1, I ), 1 )
  362:                CALL DGEMV( 'Transpose', M-I, I-1, ONE, A( I+1, 1 ), LDA,
  363:      $                     A( I+1, I ), 1, ZERO, Y( 1, I ), 1 )
  364:                CALL DGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
  365:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
  366:                CALL DGEMV( 'Transpose', M-I, I, ONE, X( I+1, 1 ), LDX,
  367:      $                     A( I+1, I ), 1, ZERO, Y( 1, I ), 1 )
  368:                CALL DGEMV( 'Transpose', I, N-I, -ONE, A( 1, I+1 ), LDA,
  369:      $                     Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
  370:                CALL DSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
  371:             END IF
  372:    20    CONTINUE
  373:       END IF
  374:       RETURN
  375: *
  376: *     End of DLABRD
  377: *
  378:       END

CVSweb interface <joel.bertrand@systella.fr>