Annotation of rpl/lapack/lapack/dlabrd.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE DLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
                      2:      $                   LDY )
                      3: *
                      4: *  -- LAPACK auxiliary routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            LDA, LDX, LDY, M, N, NB
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
                     14:      $                   TAUQ( * ), X( LDX, * ), Y( LDY, * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  DLABRD reduces the first NB rows and columns of a real general
                     21: *  m by n matrix A to upper or lower bidiagonal form by an orthogonal
                     22: *  transformation Q' * A * P, and returns the matrices X and Y which
                     23: *  are needed to apply the transformation to the unreduced part of A.
                     24: *
                     25: *  If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
                     26: *  bidiagonal form.
                     27: *
                     28: *  This is an auxiliary routine called by DGEBRD
                     29: *
                     30: *  Arguments
                     31: *  =========
                     32: *
                     33: *  M       (input) INTEGER
                     34: *          The number of rows in the matrix A.
                     35: *
                     36: *  N       (input) INTEGER
                     37: *          The number of columns in the matrix A.
                     38: *
                     39: *  NB      (input) INTEGER
                     40: *          The number of leading rows and columns of A to be reduced.
                     41: *
                     42: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                     43: *          On entry, the m by n general matrix to be reduced.
                     44: *          On exit, the first NB rows and columns of the matrix are
                     45: *          overwritten; the rest of the array is unchanged.
                     46: *          If m >= n, elements on and below the diagonal in the first NB
                     47: *            columns, with the array TAUQ, represent the orthogonal
                     48: *            matrix Q as a product of elementary reflectors; and
                     49: *            elements above the diagonal in the first NB rows, with the
                     50: *            array TAUP, represent the orthogonal matrix P as a product
                     51: *            of elementary reflectors.
                     52: *          If m < n, elements below the diagonal in the first NB
                     53: *            columns, with the array TAUQ, represent the orthogonal
                     54: *            matrix Q as a product of elementary reflectors, and
                     55: *            elements on and above the diagonal in the first NB rows,
                     56: *            with the array TAUP, represent the orthogonal matrix P as
                     57: *            a product of elementary reflectors.
                     58: *          See Further Details.
                     59: *
                     60: *  LDA     (input) INTEGER
                     61: *          The leading dimension of the array A.  LDA >= max(1,M).
                     62: *
                     63: *  D       (output) DOUBLE PRECISION array, dimension (NB)
                     64: *          The diagonal elements of the first NB rows and columns of
                     65: *          the reduced matrix.  D(i) = A(i,i).
                     66: *
                     67: *  E       (output) DOUBLE PRECISION array, dimension (NB)
                     68: *          The off-diagonal elements of the first NB rows and columns of
                     69: *          the reduced matrix.
                     70: *
                     71: *  TAUQ    (output) DOUBLE PRECISION array dimension (NB)
                     72: *          The scalar factors of the elementary reflectors which
                     73: *          represent the orthogonal matrix Q. See Further Details.
                     74: *
                     75: *  TAUP    (output) DOUBLE PRECISION array, dimension (NB)
                     76: *          The scalar factors of the elementary reflectors which
                     77: *          represent the orthogonal matrix P. See Further Details.
                     78: *
                     79: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NB)
                     80: *          The m-by-nb matrix X required to update the unreduced part
                     81: *          of A.
                     82: *
                     83: *  LDX     (input) INTEGER
                     84: *          The leading dimension of the array X. LDX >= M.
                     85: *
                     86: *  Y       (output) DOUBLE PRECISION array, dimension (LDY,NB)
                     87: *          The n-by-nb matrix Y required to update the unreduced part
                     88: *          of A.
                     89: *
                     90: *  LDY     (input) INTEGER
                     91: *          The leading dimension of the array Y. LDY >= N.
                     92: *
                     93: *  Further Details
                     94: *  ===============
                     95: *
                     96: *  The matrices Q and P are represented as products of elementary
                     97: *  reflectors:
                     98: *
                     99: *     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
                    100: *
                    101: *  Each H(i) and G(i) has the form:
                    102: *
                    103: *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
                    104: *
                    105: *  where tauq and taup are real scalars, and v and u are real vectors.
                    106: *
                    107: *  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
                    108: *  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
                    109: *  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
                    110: *
                    111: *  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
                    112: *  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
                    113: *  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
                    114: *
                    115: *  The elements of the vectors v and u together form the m-by-nb matrix
                    116: *  V and the nb-by-n matrix U' which are needed, with X and Y, to apply
                    117: *  the transformation to the unreduced part of the matrix, using a block
                    118: *  update of the form:  A := A - V*Y' - X*U'.
                    119: *
                    120: *  The contents of A on exit are illustrated by the following examples
                    121: *  with nb = 2:
                    122: *
                    123: *  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
                    124: *
                    125: *    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
                    126: *    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
                    127: *    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
                    128: *    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
                    129: *    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
                    130: *    (  v1  v2  a   a   a  )
                    131: *
                    132: *  where a denotes an element of the original matrix which is unchanged,
                    133: *  vi denotes an element of the vector defining H(i), and ui an element
                    134: *  of the vector defining G(i).
                    135: *
                    136: *  =====================================================================
                    137: *
                    138: *     .. Parameters ..
                    139:       DOUBLE PRECISION   ZERO, ONE
                    140:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    141: *     ..
                    142: *     .. Local Scalars ..
                    143:       INTEGER            I
                    144: *     ..
                    145: *     .. External Subroutines ..
                    146:       EXTERNAL           DGEMV, DLARFG, DSCAL
                    147: *     ..
                    148: *     .. Intrinsic Functions ..
                    149:       INTRINSIC          MIN
                    150: *     ..
                    151: *     .. Executable Statements ..
                    152: *
                    153: *     Quick return if possible
                    154: *
                    155:       IF( M.LE.0 .OR. N.LE.0 )
                    156:      $   RETURN
                    157: *
                    158:       IF( M.GE.N ) THEN
                    159: *
                    160: *        Reduce to upper bidiagonal form
                    161: *
                    162:          DO 10 I = 1, NB
                    163: *
                    164: *           Update A(i:m,i)
                    165: *
                    166:             CALL DGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
                    167:      $                  LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
                    168:             CALL DGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
                    169:      $                  LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
                    170: *
                    171: *           Generate reflection Q(i) to annihilate A(i+1:m,i)
                    172: *
                    173:             CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
                    174:      $                   TAUQ( I ) )
                    175:             D( I ) = A( I, I )
                    176:             IF( I.LT.N ) THEN
                    177:                A( I, I ) = ONE
                    178: *
                    179: *              Compute Y(i+1:n,i)
                    180: *
                    181:                CALL DGEMV( 'Transpose', M-I+1, N-I, ONE, A( I, I+1 ),
                    182:      $                     LDA, A( I, I ), 1, ZERO, Y( I+1, I ), 1 )
                    183:                CALL DGEMV( 'Transpose', M-I+1, I-1, ONE, A( I, 1 ), LDA,
                    184:      $                     A( I, I ), 1, ZERO, Y( 1, I ), 1 )
                    185:                CALL DGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
                    186:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
                    187:                CALL DGEMV( 'Transpose', M-I+1, I-1, ONE, X( I, 1 ), LDX,
                    188:      $                     A( I, I ), 1, ZERO, Y( 1, I ), 1 )
                    189:                CALL DGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ),
                    190:      $                     LDA, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
                    191:                CALL DSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
                    192: *
                    193: *              Update A(i,i+1:n)
                    194: *
                    195:                CALL DGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
                    196:      $                     LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
                    197:                CALL DGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ),
                    198:      $                     LDA, X( I, 1 ), LDX, ONE, A( I, I+1 ), LDA )
                    199: *
                    200: *              Generate reflection P(i) to annihilate A(i,i+2:n)
                    201: *
                    202:                CALL DLARFG( N-I, A( I, I+1 ), A( I, MIN( I+2, N ) ),
                    203:      $                      LDA, TAUP( I ) )
                    204:                E( I ) = A( I, I+1 )
                    205:                A( I, I+1 ) = ONE
                    206: *
                    207: *              Compute X(i+1:m,i)
                    208: *
                    209:                CALL DGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
                    210:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
                    211:                CALL DGEMV( 'Transpose', N-I, I, ONE, Y( I+1, 1 ), LDY,
                    212:      $                     A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
                    213:                CALL DGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
                    214:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    215:                CALL DGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
                    216:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
                    217:                CALL DGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
                    218:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    219:                CALL DSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
                    220:             END IF
                    221:    10    CONTINUE
                    222:       ELSE
                    223: *
                    224: *        Reduce to lower bidiagonal form
                    225: *
                    226:          DO 20 I = 1, NB
                    227: *
                    228: *           Update A(i,i:n)
                    229: *
                    230:             CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
                    231:      $                  LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
                    232:             CALL DGEMV( 'Transpose', I-1, N-I+1, -ONE, A( 1, I ), LDA,
                    233:      $                  X( I, 1 ), LDX, ONE, A( I, I ), LDA )
                    234: *
                    235: *           Generate reflection P(i) to annihilate A(i,i+1:n)
                    236: *
                    237:             CALL DLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA,
                    238:      $                   TAUP( I ) )
                    239:             D( I ) = A( I, I )
                    240:             IF( I.LT.M ) THEN
                    241:                A( I, I ) = ONE
                    242: *
                    243: *              Compute X(i+1:m,i)
                    244: *
                    245:                CALL DGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
                    246:      $                     LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
                    247:                CALL DGEMV( 'Transpose', N-I+1, I-1, ONE, Y( I, 1 ), LDY,
                    248:      $                     A( I, I ), LDA, ZERO, X( 1, I ), 1 )
                    249:                CALL DGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
                    250:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    251:                CALL DGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
                    252:      $                     LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
                    253:                CALL DGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
                    254:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    255:                CALL DSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
                    256: *
                    257: *              Update A(i+1:m,i)
                    258: *
                    259:                CALL DGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
                    260:      $                     LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
                    261:                CALL DGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
                    262:      $                     LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
                    263: *
                    264: *              Generate reflection Q(i) to annihilate A(i+2:m,i)
                    265: *
                    266:                CALL DLARFG( M-I, A( I+1, I ), A( MIN( I+2, M ), I ), 1,
                    267:      $                      TAUQ( I ) )
                    268:                E( I ) = A( I+1, I )
                    269:                A( I+1, I ) = ONE
                    270: *
                    271: *              Compute Y(i+1:n,i)
                    272: *
                    273:                CALL DGEMV( 'Transpose', M-I, N-I, ONE, A( I+1, I+1 ),
                    274:      $                     LDA, A( I+1, I ), 1, ZERO, Y( I+1, I ), 1 )
                    275:                CALL DGEMV( 'Transpose', M-I, I-1, ONE, A( I+1, 1 ), LDA,
                    276:      $                     A( I+1, I ), 1, ZERO, Y( 1, I ), 1 )
                    277:                CALL DGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
                    278:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
                    279:                CALL DGEMV( 'Transpose', M-I, I, ONE, X( I+1, 1 ), LDX,
                    280:      $                     A( I+1, I ), 1, ZERO, Y( 1, I ), 1 )
                    281:                CALL DGEMV( 'Transpose', I, N-I, -ONE, A( 1, I+1 ), LDA,
                    282:      $                     Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
                    283:                CALL DSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
                    284:             END IF
                    285:    20    CONTINUE
                    286:       END IF
                    287:       RETURN
                    288: *
                    289: *     End of DLABRD
                    290: *
                    291:       END

CVSweb interface <joel.bertrand@systella.fr>