Annotation of rpl/lapack/lapack/dlabrd.f, revision 1.16

1.12      bertrand    1: *> \brief \b DLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16    ! bertrand    5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16    ! bertrand    9: *> Download DLABRD + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlabrd.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlabrd.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlabrd.f">
1.9       bertrand   15: *> [TXT]</a>
1.16    ! bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
                     22: *                          LDY )
1.16    ! bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            LDA, LDX, LDY, M, N, NB
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
                     29: *      $                   TAUQ( * ), X( LDX, * ), Y( LDY, * )
                     30: *       ..
1.16    ! bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DLABRD reduces the first NB rows and columns of a real general
                     39: *> m by n matrix A to upper or lower bidiagonal form by an orthogonal
                     40: *> transformation Q**T * A * P, and returns the matrices X and Y which
                     41: *> are needed to apply the transformation to the unreduced part of A.
                     42: *>
                     43: *> If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
                     44: *> bidiagonal form.
                     45: *>
                     46: *> This is an auxiliary routine called by DGEBRD
                     47: *> \endverbatim
                     48: *
                     49: *  Arguments:
                     50: *  ==========
                     51: *
                     52: *> \param[in] M
                     53: *> \verbatim
                     54: *>          M is INTEGER
                     55: *>          The number of rows in the matrix A.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] N
                     59: *> \verbatim
                     60: *>          N is INTEGER
                     61: *>          The number of columns in the matrix A.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] NB
                     65: *> \verbatim
                     66: *>          NB is INTEGER
                     67: *>          The number of leading rows and columns of A to be reduced.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in,out] A
                     71: *> \verbatim
                     72: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     73: *>          On entry, the m by n general matrix to be reduced.
                     74: *>          On exit, the first NB rows and columns of the matrix are
                     75: *>          overwritten; the rest of the array is unchanged.
                     76: *>          If m >= n, elements on and below the diagonal in the first NB
                     77: *>            columns, with the array TAUQ, represent the orthogonal
                     78: *>            matrix Q as a product of elementary reflectors; and
                     79: *>            elements above the diagonal in the first NB rows, with the
                     80: *>            array TAUP, represent the orthogonal matrix P as a product
                     81: *>            of elementary reflectors.
                     82: *>          If m < n, elements below the diagonal in the first NB
                     83: *>            columns, with the array TAUQ, represent the orthogonal
                     84: *>            matrix Q as a product of elementary reflectors, and
                     85: *>            elements on and above the diagonal in the first NB rows,
                     86: *>            with the array TAUP, represent the orthogonal matrix P as
                     87: *>            a product of elementary reflectors.
                     88: *>          See Further Details.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] LDA
                     92: *> \verbatim
                     93: *>          LDA is INTEGER
                     94: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[out] D
                     98: *> \verbatim
                     99: *>          D is DOUBLE PRECISION array, dimension (NB)
                    100: *>          The diagonal elements of the first NB rows and columns of
                    101: *>          the reduced matrix.  D(i) = A(i,i).
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[out] E
                    105: *> \verbatim
                    106: *>          E is DOUBLE PRECISION array, dimension (NB)
                    107: *>          The off-diagonal elements of the first NB rows and columns of
                    108: *>          the reduced matrix.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[out] TAUQ
                    112: *> \verbatim
                    113: *>          TAUQ is DOUBLE PRECISION array dimension (NB)
                    114: *>          The scalar factors of the elementary reflectors which
                    115: *>          represent the orthogonal matrix Q. See Further Details.
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[out] TAUP
                    119: *> \verbatim
                    120: *>          TAUP is DOUBLE PRECISION array, dimension (NB)
                    121: *>          The scalar factors of the elementary reflectors which
                    122: *>          represent the orthogonal matrix P. See Further Details.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[out] X
                    126: *> \verbatim
                    127: *>          X is DOUBLE PRECISION array, dimension (LDX,NB)
                    128: *>          The m-by-nb matrix X required to update the unreduced part
                    129: *>          of A.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] LDX
                    133: *> \verbatim
                    134: *>          LDX is INTEGER
                    135: *>          The leading dimension of the array X. LDX >= max(1,M).
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[out] Y
                    139: *> \verbatim
                    140: *>          Y is DOUBLE PRECISION array, dimension (LDY,NB)
                    141: *>          The n-by-nb matrix Y required to update the unreduced part
                    142: *>          of A.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in] LDY
                    146: *> \verbatim
                    147: *>          LDY is INTEGER
                    148: *>          The leading dimension of the array Y. LDY >= max(1,N).
                    149: *> \endverbatim
                    150: *
                    151: *  Authors:
                    152: *  ========
                    153: *
1.16    ! bertrand  154: *> \author Univ. of Tennessee
        !           155: *> \author Univ. of California Berkeley
        !           156: *> \author Univ. of Colorado Denver
        !           157: *> \author NAG Ltd.
1.9       bertrand  158: *
1.16    ! bertrand  159: *> \date December 2016
1.9       bertrand  160: *
                    161: *> \ingroup doubleOTHERauxiliary
                    162: *
                    163: *> \par Further Details:
                    164: *  =====================
                    165: *>
                    166: *> \verbatim
                    167: *>
                    168: *>  The matrices Q and P are represented as products of elementary
                    169: *>  reflectors:
                    170: *>
                    171: *>     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
                    172: *>
                    173: *>  Each H(i) and G(i) has the form:
                    174: *>
                    175: *>     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T
                    176: *>
                    177: *>  where tauq and taup are real scalars, and v and u are real vectors.
                    178: *>
                    179: *>  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
                    180: *>  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
                    181: *>  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
                    182: *>
                    183: *>  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
                    184: *>  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
                    185: *>  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
                    186: *>
                    187: *>  The elements of the vectors v and u together form the m-by-nb matrix
                    188: *>  V and the nb-by-n matrix U**T which are needed, with X and Y, to apply
                    189: *>  the transformation to the unreduced part of the matrix, using a block
                    190: *>  update of the form:  A := A - V*Y**T - X*U**T.
                    191: *>
                    192: *>  The contents of A on exit are illustrated by the following examples
                    193: *>  with nb = 2:
                    194: *>
                    195: *>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
                    196: *>
                    197: *>    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
                    198: *>    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
                    199: *>    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
                    200: *>    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
                    201: *>    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
                    202: *>    (  v1  v2  a   a   a  )
                    203: *>
                    204: *>  where a denotes an element of the original matrix which is unchanged,
                    205: *>  vi denotes an element of the vector defining H(i), and ui an element
                    206: *>  of the vector defining G(i).
                    207: *> \endverbatim
                    208: *>
                    209: *  =====================================================================
1.1       bertrand  210:       SUBROUTINE DLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
                    211:      $                   LDY )
                    212: *
1.16    ! bertrand  213: *  -- LAPACK auxiliary routine (version 3.7.0) --
1.1       bertrand  214: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    215: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.16    ! bertrand  216: *     December 2016
1.1       bertrand  217: *
                    218: *     .. Scalar Arguments ..
                    219:       INTEGER            LDA, LDX, LDY, M, N, NB
                    220: *     ..
                    221: *     .. Array Arguments ..
                    222:       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
                    223:      $                   TAUQ( * ), X( LDX, * ), Y( LDY, * )
                    224: *     ..
                    225: *
                    226: *  =====================================================================
                    227: *
                    228: *     .. Parameters ..
                    229:       DOUBLE PRECISION   ZERO, ONE
                    230:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    231: *     ..
                    232: *     .. Local Scalars ..
                    233:       INTEGER            I
                    234: *     ..
                    235: *     .. External Subroutines ..
                    236:       EXTERNAL           DGEMV, DLARFG, DSCAL
                    237: *     ..
                    238: *     .. Intrinsic Functions ..
                    239:       INTRINSIC          MIN
                    240: *     ..
                    241: *     .. Executable Statements ..
                    242: *
                    243: *     Quick return if possible
                    244: *
                    245:       IF( M.LE.0 .OR. N.LE.0 )
                    246:      $   RETURN
                    247: *
                    248:       IF( M.GE.N ) THEN
                    249: *
                    250: *        Reduce to upper bidiagonal form
                    251: *
                    252:          DO 10 I = 1, NB
                    253: *
                    254: *           Update A(i:m,i)
                    255: *
                    256:             CALL DGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
                    257:      $                  LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
                    258:             CALL DGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
                    259:      $                  LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
                    260: *
                    261: *           Generate reflection Q(i) to annihilate A(i+1:m,i)
                    262: *
                    263:             CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
                    264:      $                   TAUQ( I ) )
                    265:             D( I ) = A( I, I )
                    266:             IF( I.LT.N ) THEN
                    267:                A( I, I ) = ONE
                    268: *
                    269: *              Compute Y(i+1:n,i)
                    270: *
                    271:                CALL DGEMV( 'Transpose', M-I+1, N-I, ONE, A( I, I+1 ),
                    272:      $                     LDA, A( I, I ), 1, ZERO, Y( I+1, I ), 1 )
                    273:                CALL DGEMV( 'Transpose', M-I+1, I-1, ONE, A( I, 1 ), LDA,
                    274:      $                     A( I, I ), 1, ZERO, Y( 1, I ), 1 )
                    275:                CALL DGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
                    276:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
                    277:                CALL DGEMV( 'Transpose', M-I+1, I-1, ONE, X( I, 1 ), LDX,
                    278:      $                     A( I, I ), 1, ZERO, Y( 1, I ), 1 )
                    279:                CALL DGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ),
                    280:      $                     LDA, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
                    281:                CALL DSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
                    282: *
                    283: *              Update A(i,i+1:n)
                    284: *
                    285:                CALL DGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
                    286:      $                     LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
                    287:                CALL DGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ),
                    288:      $                     LDA, X( I, 1 ), LDX, ONE, A( I, I+1 ), LDA )
                    289: *
                    290: *              Generate reflection P(i) to annihilate A(i,i+2:n)
                    291: *
                    292:                CALL DLARFG( N-I, A( I, I+1 ), A( I, MIN( I+2, N ) ),
                    293:      $                      LDA, TAUP( I ) )
                    294:                E( I ) = A( I, I+1 )
                    295:                A( I, I+1 ) = ONE
                    296: *
                    297: *              Compute X(i+1:m,i)
                    298: *
                    299:                CALL DGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
                    300:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
                    301:                CALL DGEMV( 'Transpose', N-I, I, ONE, Y( I+1, 1 ), LDY,
                    302:      $                     A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
                    303:                CALL DGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
                    304:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    305:                CALL DGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
                    306:      $                     LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
                    307:                CALL DGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
                    308:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    309:                CALL DSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
                    310:             END IF
                    311:    10    CONTINUE
                    312:       ELSE
                    313: *
                    314: *        Reduce to lower bidiagonal form
                    315: *
                    316:          DO 20 I = 1, NB
                    317: *
                    318: *           Update A(i,i:n)
                    319: *
                    320:             CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
                    321:      $                  LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
                    322:             CALL DGEMV( 'Transpose', I-1, N-I+1, -ONE, A( 1, I ), LDA,
                    323:      $                  X( I, 1 ), LDX, ONE, A( I, I ), LDA )
                    324: *
                    325: *           Generate reflection P(i) to annihilate A(i,i+1:n)
                    326: *
                    327:             CALL DLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA,
                    328:      $                   TAUP( I ) )
                    329:             D( I ) = A( I, I )
                    330:             IF( I.LT.M ) THEN
                    331:                A( I, I ) = ONE
                    332: *
                    333: *              Compute X(i+1:m,i)
                    334: *
                    335:                CALL DGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
                    336:      $                     LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
                    337:                CALL DGEMV( 'Transpose', N-I+1, I-1, ONE, Y( I, 1 ), LDY,
                    338:      $                     A( I, I ), LDA, ZERO, X( 1, I ), 1 )
                    339:                CALL DGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
                    340:      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    341:                CALL DGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
                    342:      $                     LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
                    343:                CALL DGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
                    344:      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
                    345:                CALL DSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
                    346: *
                    347: *              Update A(i+1:m,i)
                    348: *
                    349:                CALL DGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
                    350:      $                     LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
                    351:                CALL DGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
                    352:      $                     LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
                    353: *
                    354: *              Generate reflection Q(i) to annihilate A(i+2:m,i)
                    355: *
                    356:                CALL DLARFG( M-I, A( I+1, I ), A( MIN( I+2, M ), I ), 1,
                    357:      $                      TAUQ( I ) )
                    358:                E( I ) = A( I+1, I )
                    359:                A( I+1, I ) = ONE
                    360: *
                    361: *              Compute Y(i+1:n,i)
                    362: *
                    363:                CALL DGEMV( 'Transpose', M-I, N-I, ONE, A( I+1, I+1 ),
                    364:      $                     LDA, A( I+1, I ), 1, ZERO, Y( I+1, I ), 1 )
                    365:                CALL DGEMV( 'Transpose', M-I, I-1, ONE, A( I+1, 1 ), LDA,
                    366:      $                     A( I+1, I ), 1, ZERO, Y( 1, I ), 1 )
                    367:                CALL DGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
                    368:      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
                    369:                CALL DGEMV( 'Transpose', M-I, I, ONE, X( I+1, 1 ), LDX,
                    370:      $                     A( I+1, I ), 1, ZERO, Y( 1, I ), 1 )
                    371:                CALL DGEMV( 'Transpose', I, N-I, -ONE, A( 1, I+1 ), LDA,
                    372:      $                     Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
                    373:                CALL DSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
                    374:             END IF
                    375:    20    CONTINUE
                    376:       END IF
                    377:       RETURN
                    378: *
                    379: *     End of DLABRD
                    380: *
                    381:       END

CVSweb interface <joel.bertrand@systella.fr>