File:  [local] / rpl / lapack / lapack / dla_syrpvgrw.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:28 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       DOUBLE PRECISION FUNCTION DLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF,
    2:      $                                        LDAF, IPIV, WORK )
    3: *
    4: *     -- LAPACK routine (version 3.2.2)                                 --
    5: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    6: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    7: *     -- June 2010                                                    --
    8: *
    9: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   10: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   11: *
   12:       IMPLICIT NONE
   13: *     ..
   14: *     .. Scalar Arguments ..
   15:       CHARACTER*1        UPLO
   16:       INTEGER            N, INFO, LDA, LDAF
   17: *     ..
   18: *     .. Array Arguments ..
   19:       INTEGER            IPIV( * )
   20:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * )
   21: *     ..
   22: *
   23: *  Purpose
   24: *  =======
   25:    26: *  DLA_SYRPVGRW computes the reciprocal pivot growth factor
   27: *  norm(A)/norm(U). The "max absolute element" norm is used. If this is
   28: *  much less than 1, the stability of the LU factorization of the
   29: *  (equilibrated) matrix A could be poor. This also means that the
   30: *  solution X, estimated condition numbers, and error bounds could be
   31: *  unreliable.
   32: *
   33: *  Arguments
   34: *  =========
   35: *
   36: *     UPLO    (input) CHARACTER*1
   37: *       = 'U':  Upper triangle of A is stored;
   38: *       = 'L':  Lower triangle of A is stored.
   39: *
   40: *     N       (input) INTEGER
   41: *     The number of linear equations, i.e., the order of the
   42: *     matrix A.  N >= 0.
   43: *
   44: *     INFO    (input) INTEGER
   45: *     The value of INFO returned from DSYTRF, .i.e., the pivot in
   46: *     column INFO is exactly 0.
   47: *
   48: *     NCOLS   (input) INTEGER
   49: *     The number of columns of the matrix A. NCOLS >= 0.
   50: *
   51: *     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
   52: *     On entry, the N-by-N matrix A.
   53: *
   54: *     LDA     (input) INTEGER
   55: *     The leading dimension of the array A.  LDA >= max(1,N).
   56: *
   57: *     AF      (input) DOUBLE PRECISION array, dimension (LDAF,N)
   58: *     The block diagonal matrix D and the multipliers used to
   59: *     obtain the factor U or L as computed by DSYTRF.
   60: *
   61: *     LDAF    (input) INTEGER
   62: *     The leading dimension of the array AF.  LDAF >= max(1,N).
   63: *
   64: *     IPIV    (input) INTEGER array, dimension (N)
   65: *     Details of the interchanges and the block structure of D
   66: *     as determined by DSYTRF.
   67: *
   68: *     WORK    (input) DOUBLE PRECISION array, dimension (2*N)
   69: *
   70: *  =====================================================================
   71: *
   72: *     .. Local Scalars ..
   73:       INTEGER            NCOLS, I, J, K, KP
   74:       DOUBLE PRECISION   AMAX, UMAX, RPVGRW, TMP
   75:       LOGICAL            UPPER
   76: *     ..
   77: *     .. Intrinsic Functions ..
   78:       INTRINSIC          ABS, MAX, MIN
   79: *     ..
   80: *     .. External Functions ..
   81:       EXTERNAL           LSAME, DLASET
   82:       LOGICAL            LSAME
   83: *     ..
   84: *     .. Executable Statements ..
   85: *
   86:       UPPER = LSAME( 'Upper', UPLO )
   87:       IF ( INFO.EQ.0 ) THEN
   88:          IF ( UPPER ) THEN
   89:             NCOLS = 1
   90:          ELSE
   91:             NCOLS = N
   92:          END IF
   93:       ELSE
   94:          NCOLS = INFO
   95:       END IF
   96: 
   97:       RPVGRW = 1.0D+0
   98:       DO I = 1, 2*N
   99:          WORK( I ) = 0.0D+0
  100:       END DO
  101: *
  102: *     Find the max magnitude entry of each column of A.  Compute the max
  103: *     for all N columns so we can apply the pivot permutation while
  104: *     looping below.  Assume a full factorization is the common case.
  105: *
  106:       IF ( UPPER ) THEN
  107:          DO J = 1, N
  108:             DO I = 1, J
  109:                WORK( N+I ) = MAX( ABS( A( I, J ) ), WORK( N+I ) )
  110:                WORK( N+J ) = MAX( ABS( A( I, J ) ), WORK( N+J ) )
  111:             END DO
  112:          END DO
  113:       ELSE
  114:          DO J = 1, N
  115:             DO I = J, N
  116:                WORK( N+I ) = MAX( ABS( A( I, J ) ), WORK( N+I ) )
  117:                WORK( N+J ) = MAX( ABS( A( I, J ) ), WORK( N+J ) )
  118:             END DO
  119:          END DO
  120:       END IF
  121: *
  122: *     Now find the max magnitude entry of each column of U or L.  Also
  123: *     permute the magnitudes of A above so they're in the same order as
  124: *     the factor.
  125: *
  126: *     The iteration orders and permutations were copied from dsytrs.
  127: *     Calls to SSWAP would be severe overkill.
  128: *
  129:       IF ( UPPER ) THEN
  130:          K = N
  131:          DO WHILE ( K .LT. NCOLS .AND. K.GT.0 )
  132:             IF ( IPIV( K ).GT.0 ) THEN
  133: !              1x1 pivot
  134:                KP = IPIV( K )
  135:                IF ( KP .NE. K ) THEN
  136:                   TMP = WORK( N+K )
  137:                   WORK( N+K ) = WORK( N+KP )
  138:                   WORK( N+KP ) = TMP
  139:                END IF
  140:                DO I = 1, K
  141:                   WORK( K ) = MAX( ABS( AF( I, K ) ), WORK( K ) )
  142:                END DO
  143:                K = K - 1
  144:             ELSE
  145: !              2x2 pivot
  146:                KP = -IPIV( K )
  147:                TMP = WORK( N+K-1 )
  148:                WORK( N+K-1 ) = WORK( N+KP )
  149:                WORK( N+KP ) = TMP
  150:                DO I = 1, K-1
  151:                   WORK( K ) = MAX( ABS( AF( I, K ) ), WORK( K ) )
  152:                   WORK( K-1 ) = MAX( ABS( AF( I, K-1 ) ), WORK( K-1 ) )
  153:                END DO
  154:                WORK( K ) = MAX( ABS( AF( K, K ) ), WORK( K ) )
  155:                K = K - 2
  156:             END IF
  157:          END DO
  158:          K = NCOLS
  159:          DO WHILE ( K .LE. N )
  160:             IF ( IPIV( K ).GT.0 ) THEN
  161:                KP = IPIV( K )
  162:                IF ( KP .NE. K ) THEN
  163:                   TMP = WORK( N+K )
  164:                   WORK( N+K ) = WORK( N+KP )
  165:                   WORK( N+KP ) = TMP
  166:                END IF
  167:                K = K + 1
  168:             ELSE
  169:                KP = -IPIV( K )
  170:                TMP = WORK( N+K )
  171:                WORK( N+K ) = WORK( N+KP )
  172:                WORK( N+KP ) = TMP
  173:                K = K + 2
  174:             END IF
  175:          END DO
  176:       ELSE
  177:          K = 1
  178:          DO WHILE ( K .LE. NCOLS )
  179:             IF ( IPIV( K ).GT.0 ) THEN
  180: !              1x1 pivot
  181:                KP = IPIV( K )
  182:                IF ( KP .NE. K ) THEN
  183:                   TMP = WORK( N+K )
  184:                   WORK( N+K ) = WORK( N+KP )
  185:                   WORK( N+KP ) = TMP
  186:                END IF
  187:                DO I = K, N
  188:                   WORK( K ) = MAX( ABS( AF( I, K ) ), WORK( K ) )
  189:                END DO
  190:                K = K + 1
  191:             ELSE
  192: !              2x2 pivot
  193:                KP = -IPIV( K )
  194:                TMP = WORK( N+K+1 )
  195:                WORK( N+K+1 ) = WORK( N+KP )
  196:                WORK( N+KP ) = TMP
  197:                DO I = K+1, N
  198:                   WORK( K ) = MAX( ABS( AF( I, K ) ), WORK( K ) )
  199:                   WORK( K+1 ) = MAX( ABS( AF(I, K+1 ) ), WORK( K+1 ) )
  200:                END DO
  201:                WORK( K ) = MAX( ABS( AF( K, K ) ), WORK( K ) )
  202:                K = K + 2
  203:             END IF
  204:          END DO
  205:          K = NCOLS
  206:          DO WHILE ( K .GE. 1 )
  207:             IF ( IPIV( K ).GT.0 ) THEN
  208:                KP = IPIV( K )
  209:                IF ( KP .NE. K ) THEN
  210:                   TMP = WORK( N+K )
  211:                   WORK( N+K ) = WORK( N+KP )
  212:                   WORK( N+KP ) = TMP
  213:                END IF
  214:                K = K - 1
  215:             ELSE
  216:                KP = -IPIV( K )
  217:                TMP = WORK( N+K )
  218:                WORK( N+K ) = WORK( N+KP )
  219:                WORK( N+KP ) = TMP
  220:                K = K - 2
  221:             ENDIF
  222:          END DO
  223:       END IF
  224: *
  225: *     Compute the *inverse* of the max element growth factor.  Dividing
  226: *     by zero would imply the largest entry of the factor's column is
  227: *     zero.  Than can happen when either the column of A is zero or
  228: *     massive pivots made the factor underflow to zero.  Neither counts
  229: *     as growth in itself, so simply ignore terms with zero
  230: *     denominators.
  231: *
  232:       IF ( UPPER ) THEN
  233:          DO I = NCOLS, N
  234:             UMAX = WORK( I )
  235:             AMAX = WORK( N+I )
  236:             IF ( UMAX /= 0.0D+0 ) THEN
  237:                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  238:             END IF
  239:          END DO
  240:       ELSE
  241:          DO I = 1, NCOLS
  242:             UMAX = WORK( I )
  243:             AMAX = WORK( N+I )
  244:             IF ( UMAX /= 0.0D+0 ) THEN
  245:                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  246:             END IF
  247:          END DO
  248:       END IF
  249: 
  250:       DLA_SYRPVGRW = RPVGRW
  251:       END

CVSweb interface <joel.bertrand@systella.fr>