File:  [local] / rpl / lapack / lapack / dla_syrfsx_extended.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:42:54 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b DLA_SYRFSX_EXTENDED
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLA_SYRFSX_EXTENDED + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_syrfsx_extended.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_syrfsx_extended.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_syrfsx_extended.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
   22: *                                       AF, LDAF, IPIV, COLEQU, C, B, LDB,
   23: *                                       Y, LDY, BERR_OUT, N_NORMS,
   24: *                                       ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
   25: *                                       AYB, DY, Y_TAIL, RCOND, ITHRESH,
   26: *                                       RTHRESH, DZ_UB, IGNORE_CWISE,
   27: *                                       INFO )
   28:    29: *       .. Scalar Arguments ..
   30: *       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
   31: *      $                   N_NORMS, ITHRESH
   32: *       CHARACTER          UPLO
   33: *       LOGICAL            COLEQU, IGNORE_CWISE
   34: *       DOUBLE PRECISION   RTHRESH, DZ_UB
   35: *       ..
   36: *       .. Array Arguments ..
   37: *       INTEGER            IPIV( * )
   38: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   39: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
   40: *       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
   41: *      $                   ERR_BNDS_NORM( NRHS, * ),
   42: *      $                   ERR_BNDS_COMP( NRHS, * )
   43: *       ..
   44: *  
   45: *
   46: *> \par Purpose:
   47: *  =============
   48: *>
   49: *> \verbatim
   50: *>
   51: *> 
   52: *> DLA_SYRFSX_EXTENDED improves the computed solution to a system of
   53: *> linear equations by performing extra-precise iterative refinement
   54: *> and provides error bounds and backward error estimates for the solution.
   55: *> This subroutine is called by DSYRFSX to perform iterative refinement.
   56: *> In addition to normwise error bound, the code provides maximum
   57: *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
   58: *> and ERR_BNDS_COMP for details of the error bounds. Note that this
   59: *> subroutine is only resonsible for setting the second fields of
   60: *> ERR_BNDS_NORM and ERR_BNDS_COMP.
   61: *> \endverbatim
   62: *
   63: *  Arguments:
   64: *  ==========
   65: *
   66: *> \param[in] PREC_TYPE
   67: *> \verbatim
   68: *>          PREC_TYPE is INTEGER
   69: *>     Specifies the intermediate precision to be used in refinement.
   70: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
   71: *>     P    = 'S':  Single
   72: *>          = 'D':  Double
   73: *>          = 'I':  Indigenous
   74: *>          = 'X', 'E':  Extra
   75: *> \endverbatim
   76: *>
   77: *> \param[in] UPLO
   78: *> \verbatim
   79: *>          UPLO is CHARACTER*1
   80: *>       = 'U':  Upper triangle of A is stored;
   81: *>       = 'L':  Lower triangle of A is stored.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] N
   85: *> \verbatim
   86: *>          N is INTEGER
   87: *>     The number of linear equations, i.e., the order of the
   88: *>     matrix A.  N >= 0.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] NRHS
   92: *> \verbatim
   93: *>          NRHS is INTEGER
   94: *>     The number of right-hand-sides, i.e., the number of columns of the
   95: *>     matrix B.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] A
   99: *> \verbatim
  100: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  101: *>     On entry, the N-by-N matrix A.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] LDA
  105: *> \verbatim
  106: *>          LDA is INTEGER
  107: *>     The leading dimension of the array A.  LDA >= max(1,N).
  108: *> \endverbatim
  109: *>
  110: *> \param[in] AF
  111: *> \verbatim
  112: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
  113: *>     The block diagonal matrix D and the multipliers used to
  114: *>     obtain the factor U or L as computed by DSYTRF.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] LDAF
  118: *> \verbatim
  119: *>          LDAF is INTEGER
  120: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  121: *> \endverbatim
  122: *>
  123: *> \param[in] IPIV
  124: *> \verbatim
  125: *>          IPIV is INTEGER array, dimension (N)
  126: *>     Details of the interchanges and the block structure of D
  127: *>     as determined by DSYTRF.
  128: *> \endverbatim
  129: *>
  130: *> \param[in] COLEQU
  131: *> \verbatim
  132: *>          COLEQU is LOGICAL
  133: *>     If .TRUE. then column equilibration was done to A before calling
  134: *>     this routine. This is needed to compute the solution and error
  135: *>     bounds correctly.
  136: *> \endverbatim
  137: *>
  138: *> \param[in] C
  139: *> \verbatim
  140: *>          C is DOUBLE PRECISION array, dimension (N)
  141: *>     The column scale factors for A. If COLEQU = .FALSE., C
  142: *>     is not accessed. If C is input, each element of C should be a power
  143: *>     of the radix to ensure a reliable solution and error estimates.
  144: *>     Scaling by powers of the radix does not cause rounding errors unless
  145: *>     the result underflows or overflows. Rounding errors during scaling
  146: *>     lead to refining with a matrix that is not equivalent to the
  147: *>     input matrix, producing error estimates that may not be
  148: *>     reliable.
  149: *> \endverbatim
  150: *>
  151: *> \param[in] B
  152: *> \verbatim
  153: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  154: *>     The right-hand-side matrix B.
  155: *> \endverbatim
  156: *>
  157: *> \param[in] LDB
  158: *> \verbatim
  159: *>          LDB is INTEGER
  160: *>     The leading dimension of the array B.  LDB >= max(1,N).
  161: *> \endverbatim
  162: *>
  163: *> \param[in,out] Y
  164: *> \verbatim
  165: *>          Y is DOUBLE PRECISION array, dimension
  166: *>                    (LDY,NRHS)
  167: *>     On entry, the solution matrix X, as computed by DSYTRS.
  168: *>     On exit, the improved solution matrix Y.
  169: *> \endverbatim
  170: *>
  171: *> \param[in] LDY
  172: *> \verbatim
  173: *>          LDY is INTEGER
  174: *>     The leading dimension of the array Y.  LDY >= max(1,N).
  175: *> \endverbatim
  176: *>
  177: *> \param[out] BERR_OUT
  178: *> \verbatim
  179: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
  180: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
  181: *>     error for right-hand-side j from the formula
  182: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  183: *>     where abs(Z) is the componentwise absolute value of the matrix
  184: *>     or vector Z. This is computed by DLA_LIN_BERR.
  185: *> \endverbatim
  186: *>
  187: *> \param[in] N_NORMS
  188: *> \verbatim
  189: *>          N_NORMS is INTEGER
  190: *>     Determines which error bounds to return (see ERR_BNDS_NORM
  191: *>     and ERR_BNDS_COMP).
  192: *>     If N_NORMS >= 1 return normwise error bounds.
  193: *>     If N_NORMS >= 2 return componentwise error bounds.
  194: *> \endverbatim
  195: *>
  196: *> \param[in,out] ERR_BNDS_NORM
  197: *> \verbatim
  198: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension
  199: *>                    (NRHS, N_ERR_BNDS)
  200: *>     For each right-hand side, this array contains information about
  201: *>     various error bounds and condition numbers corresponding to the
  202: *>     normwise relative error, which is defined as follows:
  203: *>
  204: *>     Normwise relative error in the ith solution vector:
  205: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  206: *>            ------------------------------
  207: *>                  max_j abs(X(j,i))
  208: *>
  209: *>     The array is indexed by the type of error information as described
  210: *>     below. There currently are up to three pieces of information
  211: *>     returned.
  212: *>
  213: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  214: *>     right-hand side.
  215: *>
  216: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  217: *>     three fields:
  218: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  219: *>              reciprocal condition number is less than the threshold
  220: *>              sqrt(n) * slamch('Epsilon').
  221: *>
  222: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  223: *>              almost certainly within a factor of 10 of the true error
  224: *>              so long as the next entry is greater than the threshold
  225: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  226: *>              be trusted if the previous boolean is true.
  227: *>
  228: *>     err = 3  Reciprocal condition number: Estimated normwise
  229: *>              reciprocal condition number.  Compared with the threshold
  230: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  231: *>              estimate is "guaranteed". These reciprocal condition
  232: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  233: *>              appropriately scaled matrix Z.
  234: *>              Let Z = S*A, where S scales each row by a power of the
  235: *>              radix so all absolute row sums of Z are approximately 1.
  236: *>
  237: *>     This subroutine is only responsible for setting the second field
  238: *>     above.
  239: *>     See Lapack Working Note 165 for further details and extra
  240: *>     cautions.
  241: *> \endverbatim
  242: *>
  243: *> \param[in,out] ERR_BNDS_COMP
  244: *> \verbatim
  245: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension
  246: *>                    (NRHS, N_ERR_BNDS)
  247: *>     For each right-hand side, this array contains information about
  248: *>     various error bounds and condition numbers corresponding to the
  249: *>     componentwise relative error, which is defined as follows:
  250: *>
  251: *>     Componentwise relative error in the ith solution vector:
  252: *>                    abs(XTRUE(j,i) - X(j,i))
  253: *>             max_j ----------------------
  254: *>                         abs(X(j,i))
  255: *>
  256: *>     The array is indexed by the right-hand side i (on which the
  257: *>     componentwise relative error depends), and the type of error
  258: *>     information as described below. There currently are up to three
  259: *>     pieces of information returned for each right-hand side. If
  260: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  261: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  262: *>     the first (:,N_ERR_BNDS) entries are returned.
  263: *>
  264: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  265: *>     right-hand side.
  266: *>
  267: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  268: *>     three fields:
  269: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  270: *>              reciprocal condition number is less than the threshold
  271: *>              sqrt(n) * slamch('Epsilon').
  272: *>
  273: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  274: *>              almost certainly within a factor of 10 of the true error
  275: *>              so long as the next entry is greater than the threshold
  276: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  277: *>              be trusted if the previous boolean is true.
  278: *>
  279: *>     err = 3  Reciprocal condition number: Estimated componentwise
  280: *>              reciprocal condition number.  Compared with the threshold
  281: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  282: *>              estimate is "guaranteed". These reciprocal condition
  283: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  284: *>              appropriately scaled matrix Z.
  285: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  286: *>              current right-hand side and S scales each row of
  287: *>              A*diag(x) by a power of the radix so all absolute row
  288: *>              sums of Z are approximately 1.
  289: *>
  290: *>     This subroutine is only responsible for setting the second field
  291: *>     above.
  292: *>     See Lapack Working Note 165 for further details and extra
  293: *>     cautions.
  294: *> \endverbatim
  295: *>
  296: *> \param[in] RES
  297: *> \verbatim
  298: *>          RES is DOUBLE PRECISION array, dimension (N)
  299: *>     Workspace to hold the intermediate residual.
  300: *> \endverbatim
  301: *>
  302: *> \param[in] AYB
  303: *> \verbatim
  304: *>          AYB is DOUBLE PRECISION array, dimension (N)
  305: *>     Workspace. This can be the same workspace passed for Y_TAIL.
  306: *> \endverbatim
  307: *>
  308: *> \param[in] DY
  309: *> \verbatim
  310: *>          DY is DOUBLE PRECISION array, dimension (N)
  311: *>     Workspace to hold the intermediate solution.
  312: *> \endverbatim
  313: *>
  314: *> \param[in] Y_TAIL
  315: *> \verbatim
  316: *>          Y_TAIL is DOUBLE PRECISION array, dimension (N)
  317: *>     Workspace to hold the trailing bits of the intermediate solution.
  318: *> \endverbatim
  319: *>
  320: *> \param[in] RCOND
  321: *> \verbatim
  322: *>          RCOND is DOUBLE PRECISION
  323: *>     Reciprocal scaled condition number.  This is an estimate of the
  324: *>     reciprocal Skeel condition number of the matrix A after
  325: *>     equilibration (if done).  If this is less than the machine
  326: *>     precision (in particular, if it is zero), the matrix is singular
  327: *>     to working precision.  Note that the error may still be small even
  328: *>     if this number is very small and the matrix appears ill-
  329: *>     conditioned.
  330: *> \endverbatim
  331: *>
  332: *> \param[in] ITHRESH
  333: *> \verbatim
  334: *>          ITHRESH is INTEGER
  335: *>     The maximum number of residual computations allowed for
  336: *>     refinement. The default is 10. For 'aggressive' set to 100 to
  337: *>     permit convergence using approximate factorizations or
  338: *>     factorizations other than LU. If the factorization uses a
  339: *>     technique other than Gaussian elimination, the guarantees in
  340: *>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
  341: *> \endverbatim
  342: *>
  343: *> \param[in] RTHRESH
  344: *> \verbatim
  345: *>          RTHRESH is DOUBLE PRECISION
  346: *>     Determines when to stop refinement if the error estimate stops
  347: *>     decreasing. Refinement will stop when the next solution no longer
  348: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  349: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  350: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
  351: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
  352: *>     for more details.
  353: *> \endverbatim
  354: *>
  355: *> \param[in] DZ_UB
  356: *> \verbatim
  357: *>          DZ_UB is DOUBLE PRECISION
  358: *>     Determines when to start considering componentwise convergence.
  359: *>     Componentwise convergence is only considered after each component
  360: *>     of the solution Y is stable, which we definte as the relative
  361: *>     change in each component being less than DZ_UB. The default value
  362: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
  363: *>     more details.
  364: *> \endverbatim
  365: *>
  366: *> \param[in] IGNORE_CWISE
  367: *> \verbatim
  368: *>          IGNORE_CWISE is LOGICAL
  369: *>     If .TRUE. then ignore componentwise convergence. Default value
  370: *>     is .FALSE..
  371: *> \endverbatim
  372: *>
  373: *> \param[out] INFO
  374: *> \verbatim
  375: *>          INFO is INTEGER
  376: *>       = 0:  Successful exit.
  377: *>       < 0:  if INFO = -i, the ith argument to DSYTRS had an illegal
  378: *>             value
  379: *> \endverbatim
  380: *
  381: *  Authors:
  382: *  ========
  383: *
  384: *> \author Univ. of Tennessee 
  385: *> \author Univ. of California Berkeley 
  386: *> \author Univ. of Colorado Denver 
  387: *> \author NAG Ltd. 
  388: *
  389: *> \date November 2011
  390: *
  391: *> \ingroup doubleSYcomputational
  392: *
  393: *  =====================================================================
  394:       SUBROUTINE DLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
  395:      $                                AF, LDAF, IPIV, COLEQU, C, B, LDB,
  396:      $                                Y, LDY, BERR_OUT, N_NORMS,
  397:      $                                ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
  398:      $                                AYB, DY, Y_TAIL, RCOND, ITHRESH,
  399:      $                                RTHRESH, DZ_UB, IGNORE_CWISE,
  400:      $                                INFO )
  401: *
  402: *  -- LAPACK computational routine (version 3.4.0) --
  403: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  404: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  405: *     November 2011
  406: *
  407: *     .. Scalar Arguments ..
  408:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  409:      $                   N_NORMS, ITHRESH
  410:       CHARACTER          UPLO
  411:       LOGICAL            COLEQU, IGNORE_CWISE
  412:       DOUBLE PRECISION   RTHRESH, DZ_UB
  413: *     ..
  414: *     .. Array Arguments ..
  415:       INTEGER            IPIV( * )
  416:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  417:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  418:       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
  419:      $                   ERR_BNDS_NORM( NRHS, * ),
  420:      $                   ERR_BNDS_COMP( NRHS, * )
  421: *     ..
  422: *
  423: *  =====================================================================
  424: *
  425: *     .. Local Scalars ..
  426:       INTEGER            UPLO2, CNT, I, J, X_STATE, Z_STATE
  427:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  428:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  429:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  430:      $                   EPS, HUGEVAL, INCR_THRESH
  431:       LOGICAL            INCR_PREC
  432: *     ..
  433: *     .. Parameters ..
  434:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  435:      $                   NOPROG_STATE, Y_PREC_STATE, BASE_RESIDUAL,
  436:      $                   EXTRA_RESIDUAL, EXTRA_Y
  437:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  438:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
  439:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  440:      $                   EXTRA_Y = 2 )
  441:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  442:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  443:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  444:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  445:      $                   BERR_I = 3 )
  446:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  447:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  448:      $                   PIV_GROWTH_I = 9 )
  449:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  450:      $                   LA_LINRX_CWISE_I
  451:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  452:      $                   LA_LINRX_ITHRESH_I = 2 )
  453:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  454:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  455:      $                   LA_LINRX_RCOND_I
  456:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  457:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  458: *     ..
  459: *     .. External Functions ..
  460:       LOGICAL            LSAME
  461:       EXTERNAL           ILAUPLO
  462:       INTEGER            ILAUPLO
  463: *     ..
  464: *     .. External Subroutines ..
  465:       EXTERNAL           DAXPY, DCOPY, DSYTRS, DSYMV, BLAS_DSYMV_X,
  466:      $                   BLAS_DSYMV2_X, DLA_SYAMV, DLA_WWADDW,
  467:      $                   DLA_LIN_BERR
  468:       DOUBLE PRECISION   DLAMCH
  469: *     ..
  470: *     .. Intrinsic Functions ..
  471:       INTRINSIC          ABS, MAX, MIN
  472: *     ..
  473: *     .. Executable Statements ..
  474: *
  475:       IF ( INFO.NE.0 ) RETURN
  476:       EPS = DLAMCH( 'Epsilon' )
  477:       HUGEVAL = DLAMCH( 'Overflow' )
  478: *     Force HUGEVAL to Inf
  479:       HUGEVAL = HUGEVAL * HUGEVAL
  480: *     Using HUGEVAL may lead to spurious underflows.
  481:       INCR_THRESH = DBLE( N )*EPS
  482: 
  483:       IF ( LSAME ( UPLO, 'L' ) ) THEN
  484:          UPLO2 = ILAUPLO( 'L' )
  485:       ELSE
  486:          UPLO2 = ILAUPLO( 'U' )
  487:       ENDIF
  488: 
  489:       DO J = 1, NRHS
  490:          Y_PREC_STATE = EXTRA_RESIDUAL
  491:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  492:             DO I = 1, N
  493:                Y_TAIL( I ) = 0.0D+0
  494:             END DO
  495:          END IF
  496: 
  497:          DXRAT = 0.0D+0
  498:          DXRATMAX = 0.0D+0
  499:          DZRAT = 0.0D+0
  500:          DZRATMAX = 0.0D+0
  501:          FINAL_DX_X = HUGEVAL
  502:          FINAL_DZ_Z = HUGEVAL
  503:          PREVNORMDX = HUGEVAL
  504:          PREV_DZ_Z = HUGEVAL
  505:          DZ_Z = HUGEVAL
  506:          DX_X = HUGEVAL
  507: 
  508:          X_STATE = WORKING_STATE
  509:          Z_STATE = UNSTABLE_STATE
  510:          INCR_PREC = .FALSE.
  511: 
  512:          DO CNT = 1, ITHRESH
  513: *
  514: *        Compute residual RES = B_s - op(A_s) * Y,
  515: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  516: *
  517:             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  518:             IF (Y_PREC_STATE .EQ. BASE_RESIDUAL) THEN
  519:                CALL DSYMV( UPLO, N, -1.0D+0, A, LDA, Y(1,J), 1,
  520:      $              1.0D+0, RES, 1 )
  521:             ELSE IF (Y_PREC_STATE .EQ. EXTRA_RESIDUAL) THEN
  522:                CALL BLAS_DSYMV_X( UPLO2, N, -1.0D+0, A, LDA,
  523:      $              Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
  524:             ELSE
  525:                CALL BLAS_DSYMV2_X(UPLO2, N, -1.0D+0, A, LDA,
  526:      $              Y(1, J), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE)
  527:             END IF
  528:             
  529: !         XXX: RES is no longer needed.
  530:             CALL DCOPY( N, RES, 1, DY, 1 )
  531:             CALL DSYTRS( UPLO, N, 1, AF, LDAF, IPIV, DY, N, INFO )
  532: *
  533: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  534: *
  535:             NORMX = 0.0D+0
  536:             NORMY = 0.0D+0
  537:             NORMDX = 0.0D+0
  538:             DZ_Z = 0.0D+0
  539:             YMIN = HUGEVAL
  540:             
  541:             DO I = 1, N
  542:                YK = ABS( Y( I, J ) )
  543:                DYK = ABS( DY( I ) )
  544:                
  545:                IF ( YK .NE. 0.0D+0 ) THEN
  546:                   DZ_Z = MAX( DZ_Z, DYK / YK )
  547:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  548:                   DZ_Z = HUGEVAL
  549:                END IF
  550: 
  551:                YMIN = MIN( YMIN, YK )
  552: 
  553:                NORMY = MAX( NORMY, YK )
  554: 
  555:                IF ( COLEQU ) THEN
  556:                   NORMX = MAX( NORMX, YK * C( I ) )
  557:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
  558:                ELSE
  559:                   NORMX = NORMY
  560:                   NORMDX = MAX(NORMDX, DYK)
  561:                END IF
  562:             END DO
  563: 
  564:             IF ( NORMX .NE. 0.0D+0 ) THEN
  565:                DX_X = NORMDX / NORMX
  566:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  567:                DX_X = 0.0D+0
  568:             ELSE
  569:                DX_X = HUGEVAL
  570:             END IF
  571: 
  572:             DXRAT = NORMDX / PREVNORMDX
  573:             DZRAT = DZ_Z / PREV_DZ_Z
  574: *
  575: *         Check termination criteria.
  576: *
  577:             IF ( YMIN*RCOND .LT. INCR_THRESH*NORMY
  578:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
  579:      $           INCR_PREC = .TRUE.
  580: 
  581:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  582:      $           X_STATE = WORKING_STATE
  583:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
  584:                IF ( DX_X .LE. EPS ) THEN
  585:                   X_STATE = CONV_STATE
  586:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  587:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  588:                      INCR_PREC = .TRUE.
  589:                   ELSE
  590:                      X_STATE = NOPROG_STATE
  591:                   END IF
  592:                ELSE
  593:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  594:                END IF
  595:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  596:             END IF
  597: 
  598:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  599:      $           Z_STATE = WORKING_STATE
  600:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  601:      $           Z_STATE = WORKING_STATE
  602:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  603:                IF ( DZ_Z .LE. EPS ) THEN
  604:                   Z_STATE = CONV_STATE
  605:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  606:                   Z_STATE = UNSTABLE_STATE
  607:                   DZRATMAX = 0.0D+0
  608:                   FINAL_DZ_Z = HUGEVAL
  609:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  610:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  611:                      INCR_PREC = .TRUE.
  612:                   ELSE
  613:                      Z_STATE = NOPROG_STATE
  614:                   END IF
  615:                ELSE
  616:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  617:                END IF
  618:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  619:             END IF
  620: 
  621:             IF ( X_STATE.NE.WORKING_STATE.AND.
  622:      $           ( IGNORE_CWISE.OR.Z_STATE.NE.WORKING_STATE ) )
  623:      $           GOTO 666
  624: 
  625:             IF ( INCR_PREC ) THEN
  626:                INCR_PREC = .FALSE.
  627:                Y_PREC_STATE = Y_PREC_STATE + 1
  628:                DO I = 1, N
  629:                   Y_TAIL( I ) = 0.0D+0
  630:                END DO
  631:             END IF
  632: 
  633:             PREVNORMDX = NORMDX
  634:             PREV_DZ_Z = DZ_Z
  635: *
  636: *           Update soluton.
  637: *
  638:             IF (Y_PREC_STATE .LT. EXTRA_Y) THEN
  639:                CALL DAXPY( N, 1.0D+0, DY, 1, Y(1,J), 1 )
  640:             ELSE
  641:                CALL DLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
  642:             END IF
  643:             
  644:          END DO
  645: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
  646:  666     CONTINUE
  647: *
  648: *     Set final_* when cnt hits ithresh.
  649: *
  650:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  651:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  652: *
  653: *     Compute error bounds.
  654: *
  655:          IF ( N_NORMS .GE. 1 ) THEN
  656:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
  657:      $           FINAL_DX_X / (1 - DXRATMAX)
  658:          END IF
  659:          IF ( N_NORMS .GE. 2 ) THEN
  660:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
  661:      $           FINAL_DZ_Z / (1 - DZRATMAX)
  662:          END IF
  663: *
  664: *     Compute componentwise relative backward error from formula
  665: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  666: *     where abs(Z) is the componentwise absolute value of the matrix
  667: *     or vector Z.
  668: *
  669: *        Compute residual RES = B_s - op(A_s) * Y,
  670: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  671:          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  672:          CALL DSYMV( UPLO, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0, RES, 
  673:      $     1 )
  674:          
  675:          DO I = 1, N
  676:             AYB( I ) = ABS( B( I, J ) )
  677:          END DO
  678: *
  679: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
  680: *
  681:          CALL DLA_SYAMV( UPLO2, N, 1.0D+0,
  682:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
  683:          
  684:          CALL DLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
  685: *
  686: *     End of loop for each RHS.
  687: *
  688:       END DO
  689: *
  690:       RETURN
  691:       END

CVSweb interface <joel.bertrand@systella.fr>