File:  [local] / rpl / lapack / lapack / dla_syrfsx_extended.f
Revision 1.13: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:53:52 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b DLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLA_SYRFSX_EXTENDED + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_syrfsx_extended.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_syrfsx_extended.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_syrfsx_extended.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
   22: *                                       AF, LDAF, IPIV, COLEQU, C, B, LDB,
   23: *                                       Y, LDY, BERR_OUT, N_NORMS,
   24: *                                       ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
   25: *                                       AYB, DY, Y_TAIL, RCOND, ITHRESH,
   26: *                                       RTHRESH, DZ_UB, IGNORE_CWISE,
   27: *                                       INFO )
   28: *
   29: *       .. Scalar Arguments ..
   30: *       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
   31: *      $                   N_NORMS, ITHRESH
   32: *       CHARACTER          UPLO
   33: *       LOGICAL            COLEQU, IGNORE_CWISE
   34: *       DOUBLE PRECISION   RTHRESH, DZ_UB
   35: *       ..
   36: *       .. Array Arguments ..
   37: *       INTEGER            IPIV( * )
   38: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   39: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
   40: *       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
   41: *      $                   ERR_BNDS_NORM( NRHS, * ),
   42: *      $                   ERR_BNDS_COMP( NRHS, * )
   43: *       ..
   44: *
   45: *
   46: *> \par Purpose:
   47: *  =============
   48: *>
   49: *> \verbatim
   50: *>
   51: *>
   52: *> DLA_SYRFSX_EXTENDED improves the computed solution to a system of
   53: *> linear equations by performing extra-precise iterative refinement
   54: *> and provides error bounds and backward error estimates for the solution.
   55: *> This subroutine is called by DSYRFSX to perform iterative refinement.
   56: *> In addition to normwise error bound, the code provides maximum
   57: *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
   58: *> and ERR_BNDS_COMP for details of the error bounds. Note that this
   59: *> subroutine is only resonsible for setting the second fields of
   60: *> ERR_BNDS_NORM and ERR_BNDS_COMP.
   61: *> \endverbatim
   62: *
   63: *  Arguments:
   64: *  ==========
   65: *
   66: *> \param[in] PREC_TYPE
   67: *> \verbatim
   68: *>          PREC_TYPE is INTEGER
   69: *>     Specifies the intermediate precision to be used in refinement.
   70: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
   71: *>     P    = 'S':  Single
   72: *>          = 'D':  Double
   73: *>          = 'I':  Indigenous
   74: *>          = 'X', 'E':  Extra
   75: *> \endverbatim
   76: *>
   77: *> \param[in] UPLO
   78: *> \verbatim
   79: *>          UPLO is CHARACTER*1
   80: *>       = 'U':  Upper triangle of A is stored;
   81: *>       = 'L':  Lower triangle of A is stored.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] N
   85: *> \verbatim
   86: *>          N is INTEGER
   87: *>     The number of linear equations, i.e., the order of the
   88: *>     matrix A.  N >= 0.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] NRHS
   92: *> \verbatim
   93: *>          NRHS is INTEGER
   94: *>     The number of right-hand-sides, i.e., the number of columns of the
   95: *>     matrix B.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] A
   99: *> \verbatim
  100: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  101: *>     On entry, the N-by-N matrix A.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] LDA
  105: *> \verbatim
  106: *>          LDA is INTEGER
  107: *>     The leading dimension of the array A.  LDA >= max(1,N).
  108: *> \endverbatim
  109: *>
  110: *> \param[in] AF
  111: *> \verbatim
  112: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
  113: *>     The block diagonal matrix D and the multipliers used to
  114: *>     obtain the factor U or L as computed by DSYTRF.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] LDAF
  118: *> \verbatim
  119: *>          LDAF is INTEGER
  120: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  121: *> \endverbatim
  122: *>
  123: *> \param[in] IPIV
  124: *> \verbatim
  125: *>          IPIV is INTEGER array, dimension (N)
  126: *>     Details of the interchanges and the block structure of D
  127: *>     as determined by DSYTRF.
  128: *> \endverbatim
  129: *>
  130: *> \param[in] COLEQU
  131: *> \verbatim
  132: *>          COLEQU is LOGICAL
  133: *>     If .TRUE. then column equilibration was done to A before calling
  134: *>     this routine. This is needed to compute the solution and error
  135: *>     bounds correctly.
  136: *> \endverbatim
  137: *>
  138: *> \param[in] C
  139: *> \verbatim
  140: *>          C is DOUBLE PRECISION array, dimension (N)
  141: *>     The column scale factors for A. If COLEQU = .FALSE., C
  142: *>     is not accessed. If C is input, each element of C should be a power
  143: *>     of the radix to ensure a reliable solution and error estimates.
  144: *>     Scaling by powers of the radix does not cause rounding errors unless
  145: *>     the result underflows or overflows. Rounding errors during scaling
  146: *>     lead to refining with a matrix that is not equivalent to the
  147: *>     input matrix, producing error estimates that may not be
  148: *>     reliable.
  149: *> \endverbatim
  150: *>
  151: *> \param[in] B
  152: *> \verbatim
  153: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  154: *>     The right-hand-side matrix B.
  155: *> \endverbatim
  156: *>
  157: *> \param[in] LDB
  158: *> \verbatim
  159: *>          LDB is INTEGER
  160: *>     The leading dimension of the array B.  LDB >= max(1,N).
  161: *> \endverbatim
  162: *>
  163: *> \param[in,out] Y
  164: *> \verbatim
  165: *>          Y is DOUBLE PRECISION array, dimension
  166: *>                    (LDY,NRHS)
  167: *>     On entry, the solution matrix X, as computed by DSYTRS.
  168: *>     On exit, the improved solution matrix Y.
  169: *> \endverbatim
  170: *>
  171: *> \param[in] LDY
  172: *> \verbatim
  173: *>          LDY is INTEGER
  174: *>     The leading dimension of the array Y.  LDY >= max(1,N).
  175: *> \endverbatim
  176: *>
  177: *> \param[out] BERR_OUT
  178: *> \verbatim
  179: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
  180: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
  181: *>     error for right-hand-side j from the formula
  182: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  183: *>     where abs(Z) is the componentwise absolute value of the matrix
  184: *>     or vector Z. This is computed by DLA_LIN_BERR.
  185: *> \endverbatim
  186: *>
  187: *> \param[in] N_NORMS
  188: *> \verbatim
  189: *>          N_NORMS is INTEGER
  190: *>     Determines which error bounds to return (see ERR_BNDS_NORM
  191: *>     and ERR_BNDS_COMP).
  192: *>     If N_NORMS >= 1 return normwise error bounds.
  193: *>     If N_NORMS >= 2 return componentwise error bounds.
  194: *> \endverbatim
  195: *>
  196: *> \param[in,out] ERR_BNDS_NORM
  197: *> \verbatim
  198: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension
  199: *>                    (NRHS, N_ERR_BNDS)
  200: *>     For each right-hand side, this array contains information about
  201: *>     various error bounds and condition numbers corresponding to the
  202: *>     normwise relative error, which is defined as follows:
  203: *>
  204: *>     Normwise relative error in the ith solution vector:
  205: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  206: *>            ------------------------------
  207: *>                  max_j abs(X(j,i))
  208: *>
  209: *>     The array is indexed by the type of error information as described
  210: *>     below. There currently are up to three pieces of information
  211: *>     returned.
  212: *>
  213: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  214: *>     right-hand side.
  215: *>
  216: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  217: *>     three fields:
  218: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  219: *>              reciprocal condition number is less than the threshold
  220: *>              sqrt(n) * slamch('Epsilon').
  221: *>
  222: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  223: *>              almost certainly within a factor of 10 of the true error
  224: *>              so long as the next entry is greater than the threshold
  225: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  226: *>              be trusted if the previous boolean is true.
  227: *>
  228: *>     err = 3  Reciprocal condition number: Estimated normwise
  229: *>              reciprocal condition number.  Compared with the threshold
  230: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  231: *>              estimate is "guaranteed". These reciprocal condition
  232: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  233: *>              appropriately scaled matrix Z.
  234: *>              Let Z = S*A, where S scales each row by a power of the
  235: *>              radix so all absolute row sums of Z are approximately 1.
  236: *>
  237: *>     This subroutine is only responsible for setting the second field
  238: *>     above.
  239: *>     See Lapack Working Note 165 for further details and extra
  240: *>     cautions.
  241: *> \endverbatim
  242: *>
  243: *> \param[in,out] ERR_BNDS_COMP
  244: *> \verbatim
  245: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension
  246: *>                    (NRHS, N_ERR_BNDS)
  247: *>     For each right-hand side, this array contains information about
  248: *>     various error bounds and condition numbers corresponding to the
  249: *>     componentwise relative error, which is defined as follows:
  250: *>
  251: *>     Componentwise relative error in the ith solution vector:
  252: *>                    abs(XTRUE(j,i) - X(j,i))
  253: *>             max_j ----------------------
  254: *>                         abs(X(j,i))
  255: *>
  256: *>     The array is indexed by the right-hand side i (on which the
  257: *>     componentwise relative error depends), and the type of error
  258: *>     information as described below. There currently are up to three
  259: *>     pieces of information returned for each right-hand side. If
  260: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  261: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  262: *>     the first (:,N_ERR_BNDS) entries are returned.
  263: *>
  264: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  265: *>     right-hand side.
  266: *>
  267: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  268: *>     three fields:
  269: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  270: *>              reciprocal condition number is less than the threshold
  271: *>              sqrt(n) * slamch('Epsilon').
  272: *>
  273: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  274: *>              almost certainly within a factor of 10 of the true error
  275: *>              so long as the next entry is greater than the threshold
  276: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  277: *>              be trusted if the previous boolean is true.
  278: *>
  279: *>     err = 3  Reciprocal condition number: Estimated componentwise
  280: *>              reciprocal condition number.  Compared with the threshold
  281: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  282: *>              estimate is "guaranteed". These reciprocal condition
  283: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  284: *>              appropriately scaled matrix Z.
  285: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  286: *>              current right-hand side and S scales each row of
  287: *>              A*diag(x) by a power of the radix so all absolute row
  288: *>              sums of Z are approximately 1.
  289: *>
  290: *>     This subroutine is only responsible for setting the second field
  291: *>     above.
  292: *>     See Lapack Working Note 165 for further details and extra
  293: *>     cautions.
  294: *> \endverbatim
  295: *>
  296: *> \param[in] RES
  297: *> \verbatim
  298: *>          RES is DOUBLE PRECISION array, dimension (N)
  299: *>     Workspace to hold the intermediate residual.
  300: *> \endverbatim
  301: *>
  302: *> \param[in] AYB
  303: *> \verbatim
  304: *>          AYB is DOUBLE PRECISION array, dimension (N)
  305: *>     Workspace. This can be the same workspace passed for Y_TAIL.
  306: *> \endverbatim
  307: *>
  308: *> \param[in] DY
  309: *> \verbatim
  310: *>          DY is DOUBLE PRECISION array, dimension (N)
  311: *>     Workspace to hold the intermediate solution.
  312: *> \endverbatim
  313: *>
  314: *> \param[in] Y_TAIL
  315: *> \verbatim
  316: *>          Y_TAIL is DOUBLE PRECISION array, dimension (N)
  317: *>     Workspace to hold the trailing bits of the intermediate solution.
  318: *> \endverbatim
  319: *>
  320: *> \param[in] RCOND
  321: *> \verbatim
  322: *>          RCOND is DOUBLE PRECISION
  323: *>     Reciprocal scaled condition number.  This is an estimate of the
  324: *>     reciprocal Skeel condition number of the matrix A after
  325: *>     equilibration (if done).  If this is less than the machine
  326: *>     precision (in particular, if it is zero), the matrix is singular
  327: *>     to working precision.  Note that the error may still be small even
  328: *>     if this number is very small and the matrix appears ill-
  329: *>     conditioned.
  330: *> \endverbatim
  331: *>
  332: *> \param[in] ITHRESH
  333: *> \verbatim
  334: *>          ITHRESH is INTEGER
  335: *>     The maximum number of residual computations allowed for
  336: *>     refinement. The default is 10. For 'aggressive' set to 100 to
  337: *>     permit convergence using approximate factorizations or
  338: *>     factorizations other than LU. If the factorization uses a
  339: *>     technique other than Gaussian elimination, the guarantees in
  340: *>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
  341: *> \endverbatim
  342: *>
  343: *> \param[in] RTHRESH
  344: *> \verbatim
  345: *>          RTHRESH is DOUBLE PRECISION
  346: *>     Determines when to stop refinement if the error estimate stops
  347: *>     decreasing. Refinement will stop when the next solution no longer
  348: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  349: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  350: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
  351: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
  352: *>     for more details.
  353: *> \endverbatim
  354: *>
  355: *> \param[in] DZ_UB
  356: *> \verbatim
  357: *>          DZ_UB is DOUBLE PRECISION
  358: *>     Determines when to start considering componentwise convergence.
  359: *>     Componentwise convergence is only considered after each component
  360: *>     of the solution Y is stable, which we definte as the relative
  361: *>     change in each component being less than DZ_UB. The default value
  362: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
  363: *>     more details.
  364: *> \endverbatim
  365: *>
  366: *> \param[in] IGNORE_CWISE
  367: *> \verbatim
  368: *>          IGNORE_CWISE is LOGICAL
  369: *>     If .TRUE. then ignore componentwise convergence. Default value
  370: *>     is .FALSE..
  371: *> \endverbatim
  372: *>
  373: *> \param[out] INFO
  374: *> \verbatim
  375: *>          INFO is INTEGER
  376: *>       = 0:  Successful exit.
  377: *>       < 0:  if INFO = -i, the ith argument to DLA_SYRFSX_EXTENDED had an illegal
  378: *>             value
  379: *> \endverbatim
  380: *
  381: *  Authors:
  382: *  ========
  383: *
  384: *> \author Univ. of Tennessee
  385: *> \author Univ. of California Berkeley
  386: *> \author Univ. of Colorado Denver
  387: *> \author NAG Ltd.
  388: *
  389: *> \date December 2016
  390: *
  391: *> \ingroup doubleSYcomputational
  392: *
  393: *  =====================================================================
  394:       SUBROUTINE DLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
  395:      $                                AF, LDAF, IPIV, COLEQU, C, B, LDB,
  396:      $                                Y, LDY, BERR_OUT, N_NORMS,
  397:      $                                ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
  398:      $                                AYB, DY, Y_TAIL, RCOND, ITHRESH,
  399:      $                                RTHRESH, DZ_UB, IGNORE_CWISE,
  400:      $                                INFO )
  401: *
  402: *  -- LAPACK computational routine (version 3.7.0) --
  403: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  404: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  405: *     December 2016
  406: *
  407: *     .. Scalar Arguments ..
  408:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  409:      $                   N_NORMS, ITHRESH
  410:       CHARACTER          UPLO
  411:       LOGICAL            COLEQU, IGNORE_CWISE
  412:       DOUBLE PRECISION   RTHRESH, DZ_UB
  413: *     ..
  414: *     .. Array Arguments ..
  415:       INTEGER            IPIV( * )
  416:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  417:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  418:       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
  419:      $                   ERR_BNDS_NORM( NRHS, * ),
  420:      $                   ERR_BNDS_COMP( NRHS, * )
  421: *     ..
  422: *
  423: *  =====================================================================
  424: *
  425: *     .. Local Scalars ..
  426:       INTEGER            UPLO2, CNT, I, J, X_STATE, Z_STATE
  427:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  428:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  429:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  430:      $                   EPS, HUGEVAL, INCR_THRESH
  431:       LOGICAL            INCR_PREC, UPPER
  432: *     ..
  433: *     .. Parameters ..
  434:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  435:      $                   NOPROG_STATE, Y_PREC_STATE, BASE_RESIDUAL,
  436:      $                   EXTRA_RESIDUAL, EXTRA_Y
  437:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  438:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
  439:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  440:      $                   EXTRA_Y = 2 )
  441:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  442:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  443:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  444:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  445:      $                   BERR_I = 3 )
  446:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  447:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  448:      $                   PIV_GROWTH_I = 9 )
  449:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  450:      $                   LA_LINRX_CWISE_I
  451:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  452:      $                   LA_LINRX_ITHRESH_I = 2 )
  453:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  454:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  455:      $                   LA_LINRX_RCOND_I
  456:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  457:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  458: *     ..
  459: *     .. External Functions ..
  460:       LOGICAL            LSAME
  461:       EXTERNAL           ILAUPLO
  462:       INTEGER            ILAUPLO
  463: *     ..
  464: *     .. External Subroutines ..
  465:       EXTERNAL           DAXPY, DCOPY, DSYTRS, DSYMV, BLAS_DSYMV_X,
  466:      $                   BLAS_DSYMV2_X, DLA_SYAMV, DLA_WWADDW,
  467:      $                   DLA_LIN_BERR
  468:       DOUBLE PRECISION   DLAMCH
  469: *     ..
  470: *     .. Intrinsic Functions ..
  471:       INTRINSIC          ABS, MAX, MIN
  472: *     ..
  473: *     .. Executable Statements ..
  474: *
  475:       INFO = 0
  476:       UPPER = LSAME( UPLO, 'U' )
  477:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  478:          INFO = -2
  479:       ELSE IF( N.LT.0 ) THEN
  480:          INFO = -3
  481:       ELSE IF( NRHS.LT.0 ) THEN
  482:          INFO = -4
  483:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  484:          INFO = -6
  485:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  486:          INFO = -8
  487:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  488:          INFO = -13
  489:       ELSE IF( LDY.LT.MAX( 1, N ) ) THEN
  490:          INFO = -15
  491:       END IF
  492:       IF( INFO.NE.0 ) THEN
  493:          CALL XERBLA( 'DLA_SYRFSX_EXTENDED', -INFO )
  494:          RETURN
  495:       END IF
  496:       EPS = DLAMCH( 'Epsilon' )
  497:       HUGEVAL = DLAMCH( 'Overflow' )
  498: *     Force HUGEVAL to Inf
  499:       HUGEVAL = HUGEVAL * HUGEVAL
  500: *     Using HUGEVAL may lead to spurious underflows.
  501:       INCR_THRESH = DBLE( N )*EPS
  502: 
  503:       IF ( LSAME ( UPLO, 'L' ) ) THEN
  504:          UPLO2 = ILAUPLO( 'L' )
  505:       ELSE
  506:          UPLO2 = ILAUPLO( 'U' )
  507:       ENDIF
  508: 
  509:       DO J = 1, NRHS
  510:          Y_PREC_STATE = EXTRA_RESIDUAL
  511:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  512:             DO I = 1, N
  513:                Y_TAIL( I ) = 0.0D+0
  514:             END DO
  515:          END IF
  516: 
  517:          DXRAT = 0.0D+0
  518:          DXRATMAX = 0.0D+0
  519:          DZRAT = 0.0D+0
  520:          DZRATMAX = 0.0D+0
  521:          FINAL_DX_X = HUGEVAL
  522:          FINAL_DZ_Z = HUGEVAL
  523:          PREVNORMDX = HUGEVAL
  524:          PREV_DZ_Z = HUGEVAL
  525:          DZ_Z = HUGEVAL
  526:          DX_X = HUGEVAL
  527: 
  528:          X_STATE = WORKING_STATE
  529:          Z_STATE = UNSTABLE_STATE
  530:          INCR_PREC = .FALSE.
  531: 
  532:          DO CNT = 1, ITHRESH
  533: *
  534: *        Compute residual RES = B_s - op(A_s) * Y,
  535: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  536: *
  537:             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  538:             IF (Y_PREC_STATE .EQ. BASE_RESIDUAL) THEN
  539:                CALL DSYMV( UPLO, N, -1.0D+0, A, LDA, Y(1,J), 1,
  540:      $              1.0D+0, RES, 1 )
  541:             ELSE IF (Y_PREC_STATE .EQ. EXTRA_RESIDUAL) THEN
  542:                CALL BLAS_DSYMV_X( UPLO2, N, -1.0D+0, A, LDA,
  543:      $              Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
  544:             ELSE
  545:                CALL BLAS_DSYMV2_X(UPLO2, N, -1.0D+0, A, LDA,
  546:      $              Y(1, J), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE)
  547:             END IF
  548: 
  549: !         XXX: RES is no longer needed.
  550:             CALL DCOPY( N, RES, 1, DY, 1 )
  551:             CALL DSYTRS( UPLO, N, 1, AF, LDAF, IPIV, DY, N, INFO )
  552: *
  553: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  554: *
  555:             NORMX = 0.0D+0
  556:             NORMY = 0.0D+0
  557:             NORMDX = 0.0D+0
  558:             DZ_Z = 0.0D+0
  559:             YMIN = HUGEVAL
  560: 
  561:             DO I = 1, N
  562:                YK = ABS( Y( I, J ) )
  563:                DYK = ABS( DY( I ) )
  564: 
  565:                IF ( YK .NE. 0.0D+0 ) THEN
  566:                   DZ_Z = MAX( DZ_Z, DYK / YK )
  567:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  568:                   DZ_Z = HUGEVAL
  569:                END IF
  570: 
  571:                YMIN = MIN( YMIN, YK )
  572: 
  573:                NORMY = MAX( NORMY, YK )
  574: 
  575:                IF ( COLEQU ) THEN
  576:                   NORMX = MAX( NORMX, YK * C( I ) )
  577:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
  578:                ELSE
  579:                   NORMX = NORMY
  580:                   NORMDX = MAX(NORMDX, DYK)
  581:                END IF
  582:             END DO
  583: 
  584:             IF ( NORMX .NE. 0.0D+0 ) THEN
  585:                DX_X = NORMDX / NORMX
  586:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  587:                DX_X = 0.0D+0
  588:             ELSE
  589:                DX_X = HUGEVAL
  590:             END IF
  591: 
  592:             DXRAT = NORMDX / PREVNORMDX
  593:             DZRAT = DZ_Z / PREV_DZ_Z
  594: *
  595: *         Check termination criteria.
  596: *
  597:             IF ( YMIN*RCOND .LT. INCR_THRESH*NORMY
  598:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
  599:      $           INCR_PREC = .TRUE.
  600: 
  601:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  602:      $           X_STATE = WORKING_STATE
  603:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
  604:                IF ( DX_X .LE. EPS ) THEN
  605:                   X_STATE = CONV_STATE
  606:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  607:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  608:                      INCR_PREC = .TRUE.
  609:                   ELSE
  610:                      X_STATE = NOPROG_STATE
  611:                   END IF
  612:                ELSE
  613:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  614:                END IF
  615:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  616:             END IF
  617: 
  618:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  619:      $           Z_STATE = WORKING_STATE
  620:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  621:      $           Z_STATE = WORKING_STATE
  622:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  623:                IF ( DZ_Z .LE. EPS ) THEN
  624:                   Z_STATE = CONV_STATE
  625:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  626:                   Z_STATE = UNSTABLE_STATE
  627:                   DZRATMAX = 0.0D+0
  628:                   FINAL_DZ_Z = HUGEVAL
  629:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  630:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  631:                      INCR_PREC = .TRUE.
  632:                   ELSE
  633:                      Z_STATE = NOPROG_STATE
  634:                   END IF
  635:                ELSE
  636:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  637:                END IF
  638:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  639:             END IF
  640: 
  641:             IF ( X_STATE.NE.WORKING_STATE.AND.
  642:      $           ( IGNORE_CWISE.OR.Z_STATE.NE.WORKING_STATE ) )
  643:      $           GOTO 666
  644: 
  645:             IF ( INCR_PREC ) THEN
  646:                INCR_PREC = .FALSE.
  647:                Y_PREC_STATE = Y_PREC_STATE + 1
  648:                DO I = 1, N
  649:                   Y_TAIL( I ) = 0.0D+0
  650:                END DO
  651:             END IF
  652: 
  653:             PREVNORMDX = NORMDX
  654:             PREV_DZ_Z = DZ_Z
  655: *
  656: *           Update soluton.
  657: *
  658:             IF (Y_PREC_STATE .LT. EXTRA_Y) THEN
  659:                CALL DAXPY( N, 1.0D+0, DY, 1, Y(1,J), 1 )
  660:             ELSE
  661:                CALL DLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
  662:             END IF
  663: 
  664:          END DO
  665: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
  666:  666     CONTINUE
  667: *
  668: *     Set final_* when cnt hits ithresh.
  669: *
  670:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  671:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  672: *
  673: *     Compute error bounds.
  674: *
  675:          IF ( N_NORMS .GE. 1 ) THEN
  676:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
  677:      $           FINAL_DX_X / (1 - DXRATMAX)
  678:          END IF
  679:          IF ( N_NORMS .GE. 2 ) THEN
  680:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
  681:      $           FINAL_DZ_Z / (1 - DZRATMAX)
  682:          END IF
  683: *
  684: *     Compute componentwise relative backward error from formula
  685: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  686: *     where abs(Z) is the componentwise absolute value of the matrix
  687: *     or vector Z.
  688: *
  689: *        Compute residual RES = B_s - op(A_s) * Y,
  690: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  691:          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  692:          CALL DSYMV( UPLO, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0, RES,
  693:      $     1 )
  694: 
  695:          DO I = 1, N
  696:             AYB( I ) = ABS( B( I, J ) )
  697:          END DO
  698: *
  699: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
  700: *
  701:          CALL DLA_SYAMV( UPLO2, N, 1.0D+0,
  702:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
  703: 
  704:          CALL DLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
  705: *
  706: *     End of loop for each RHS.
  707: *
  708:       END DO
  709: *
  710:       RETURN
  711:       END

CVSweb interface <joel.bertrand@systella.fr>