File:  [local] / rpl / lapack / lapack / dla_syrcond.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:52 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLA_SYRCOND estimates the Skeel condition number for a symmetric indefinite matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLA_SYRCOND + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_syrcond.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_syrcond.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_syrcond.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF,
   22: *                                              IPIV, CMODE, C, INFO, WORK,
   23: *                                              IWORK )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          UPLO
   27: *       INTEGER            N, LDA, LDAF, INFO, CMODE
   28: *       ..
   29: *       .. Array Arguments
   30: *       INTEGER            IWORK( * ), IPIV( * )
   31: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * ), C( * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *>    DLA_SYRCOND estimates the Skeel condition number of  op(A) * op2(C)
   41: *>    where op2 is determined by CMODE as follows
   42: *>    CMODE =  1    op2(C) = C
   43: *>    CMODE =  0    op2(C) = I
   44: *>    CMODE = -1    op2(C) = inv(C)
   45: *>    The Skeel condition number cond(A) = norminf( |inv(A)||A| )
   46: *>    is computed by computing scaling factors R such that
   47: *>    diag(R)*A*op2(C) is row equilibrated and computing the standard
   48: *>    infinity-norm condition number.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] UPLO
   55: *> \verbatim
   56: *>          UPLO is CHARACTER*1
   57: *>       = 'U':  Upper triangle of A is stored;
   58: *>       = 'L':  Lower triangle of A is stored.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] N
   62: *> \verbatim
   63: *>          N is INTEGER
   64: *>     The number of linear equations, i.e., the order of the
   65: *>     matrix A.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] A
   69: *> \verbatim
   70: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   71: *>     On entry, the N-by-N matrix A.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] LDA
   75: *> \verbatim
   76: *>          LDA is INTEGER
   77: *>     The leading dimension of the array A.  LDA >= max(1,N).
   78: *> \endverbatim
   79: *>
   80: *> \param[in] AF
   81: *> \verbatim
   82: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
   83: *>     The block diagonal matrix D and the multipliers used to
   84: *>     obtain the factor U or L as computed by DSYTRF.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] LDAF
   88: *> \verbatim
   89: *>          LDAF is INTEGER
   90: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
   91: *> \endverbatim
   92: *>
   93: *> \param[in] IPIV
   94: *> \verbatim
   95: *>          IPIV is INTEGER array, dimension (N)
   96: *>     Details of the interchanges and the block structure of D
   97: *>     as determined by DSYTRF.
   98: *> \endverbatim
   99: *>
  100: *> \param[in] CMODE
  101: *> \verbatim
  102: *>          CMODE is INTEGER
  103: *>     Determines op2(C) in the formula op(A) * op2(C) as follows:
  104: *>     CMODE =  1    op2(C) = C
  105: *>     CMODE =  0    op2(C) = I
  106: *>     CMODE = -1    op2(C) = inv(C)
  107: *> \endverbatim
  108: *>
  109: *> \param[in] C
  110: *> \verbatim
  111: *>          C is DOUBLE PRECISION array, dimension (N)
  112: *>     The vector C in the formula op(A) * op2(C).
  113: *> \endverbatim
  114: *>
  115: *> \param[out] INFO
  116: *> \verbatim
  117: *>          INFO is INTEGER
  118: *>       = 0:  Successful exit.
  119: *>     i > 0:  The ith argument is invalid.
  120: *> \endverbatim
  121: *>
  122: *> \param[out] WORK
  123: *> \verbatim
  124: *>          WORK is DOUBLE PRECISION array, dimension (3*N).
  125: *>     Workspace.
  126: *> \endverbatim
  127: *>
  128: *> \param[out] IWORK
  129: *> \verbatim
  130: *>          IWORK is INTEGER array, dimension (N).
  131: *>     Workspace.
  132: *> \endverbatim
  133: *
  134: *  Authors:
  135: *  ========
  136: *
  137: *> \author Univ. of Tennessee
  138: *> \author Univ. of California Berkeley
  139: *> \author Univ. of Colorado Denver
  140: *> \author NAG Ltd.
  141: *
  142: *> \ingroup doubleSYcomputational
  143: *
  144: *  =====================================================================
  145:       DOUBLE PRECISION FUNCTION DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF,
  146:      $                                       IPIV, CMODE, C, INFO, WORK,
  147:      $                                       IWORK )
  148: *
  149: *  -- LAPACK computational routine --
  150: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  151: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  152: *
  153: *     .. Scalar Arguments ..
  154:       CHARACTER          UPLO
  155:       INTEGER            N, LDA, LDAF, INFO, CMODE
  156: *     ..
  157: *     .. Array Arguments
  158:       INTEGER            IWORK( * ), IPIV( * )
  159:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * ), C( * )
  160: *     ..
  161: *
  162: *  =====================================================================
  163: *
  164: *     .. Local Scalars ..
  165:       CHARACTER          NORMIN
  166:       INTEGER            KASE, I, J
  167:       DOUBLE PRECISION   AINVNM, SMLNUM, TMP
  168:       LOGICAL            UP
  169: *     ..
  170: *     .. Local Arrays ..
  171:       INTEGER            ISAVE( 3 )
  172: *     ..
  173: *     .. External Functions ..
  174:       LOGICAL            LSAME
  175:       DOUBLE PRECISION   DLAMCH
  176:       EXTERNAL           LSAME, DLAMCH
  177: *     ..
  178: *     .. External Subroutines ..
  179:       EXTERNAL           DLACN2, XERBLA, DSYTRS
  180: *     ..
  181: *     .. Intrinsic Functions ..
  182:       INTRINSIC          ABS, MAX
  183: *     ..
  184: *     .. Executable Statements ..
  185: *
  186:       DLA_SYRCOND = 0.0D+0
  187: *
  188:       INFO = 0
  189:       IF( N.LT.0 ) THEN
  190:          INFO = -2
  191:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  192:          INFO = -4
  193:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  194:          INFO = -6
  195:       END IF
  196:       IF( INFO.NE.0 ) THEN
  197:          CALL XERBLA( 'DLA_SYRCOND', -INFO )
  198:          RETURN
  199:       END IF
  200:       IF( N.EQ.0 ) THEN
  201:          DLA_SYRCOND = 1.0D+0
  202:          RETURN
  203:       END IF
  204:       UP = .FALSE.
  205:       IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  206: *
  207: *     Compute the equilibration matrix R such that
  208: *     inv(R)*A*C has unit 1-norm.
  209: *
  210:       IF ( UP ) THEN
  211:          DO I = 1, N
  212:             TMP = 0.0D+0
  213:             IF ( CMODE .EQ. 1 ) THEN
  214:                DO J = 1, I
  215:                   TMP = TMP + ABS( A( J, I ) * C( J ) )
  216:                END DO
  217:                DO J = I+1, N
  218:                   TMP = TMP + ABS( A( I, J ) * C( J ) )
  219:                END DO
  220:             ELSE IF ( CMODE .EQ. 0 ) THEN
  221:                DO J = 1, I
  222:                   TMP = TMP + ABS( A( J, I ) )
  223:                END DO
  224:                DO J = I+1, N
  225:                   TMP = TMP + ABS( A( I, J ) )
  226:                END DO
  227:             ELSE
  228:                DO J = 1, I
  229:                   TMP = TMP + ABS( A( J, I ) / C( J ) )
  230:                END DO
  231:                DO J = I+1, N
  232:                   TMP = TMP + ABS( A( I, J ) / C( J ) )
  233:                END DO
  234:             END IF
  235:             WORK( 2*N+I ) = TMP
  236:          END DO
  237:       ELSE
  238:          DO I = 1, N
  239:             TMP = 0.0D+0
  240:             IF ( CMODE .EQ. 1 ) THEN
  241:                DO J = 1, I
  242:                   TMP = TMP + ABS( A( I, J ) * C( J ) )
  243:                END DO
  244:                DO J = I+1, N
  245:                   TMP = TMP + ABS( A( J, I ) * C( J ) )
  246:                END DO
  247:             ELSE IF ( CMODE .EQ. 0 ) THEN
  248:                DO J = 1, I
  249:                   TMP = TMP + ABS( A( I, J ) )
  250:                END DO
  251:                DO J = I+1, N
  252:                   TMP = TMP + ABS( A( J, I ) )
  253:                END DO
  254:             ELSE
  255:                DO J = 1, I
  256:                   TMP = TMP + ABS( A( I, J) / C( J ) )
  257:                END DO
  258:                DO J = I+1, N
  259:                   TMP = TMP + ABS( A( J, I) / C( J ) )
  260:                END DO
  261:             END IF
  262:             WORK( 2*N+I ) = TMP
  263:          END DO
  264:       ENDIF
  265: *
  266: *     Estimate the norm of inv(op(A)).
  267: *
  268:       SMLNUM = DLAMCH( 'Safe minimum' )
  269:       AINVNM = 0.0D+0
  270:       NORMIN = 'N'
  271: 
  272:       KASE = 0
  273:    10 CONTINUE
  274:       CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
  275:       IF( KASE.NE.0 ) THEN
  276:          IF( KASE.EQ.2 ) THEN
  277: *
  278: *           Multiply by R.
  279: *
  280:             DO I = 1, N
  281:                WORK( I ) = WORK( I ) * WORK( 2*N+I )
  282:             END DO
  283: 
  284:             IF ( UP ) THEN
  285:                CALL DSYTRS( 'U', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  286:             ELSE
  287:                CALL DSYTRS( 'L', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  288:             ENDIF
  289: *
  290: *           Multiply by inv(C).
  291: *
  292:             IF ( CMODE .EQ. 1 ) THEN
  293:                DO I = 1, N
  294:                   WORK( I ) = WORK( I ) / C( I )
  295:                END DO
  296:             ELSE IF ( CMODE .EQ. -1 ) THEN
  297:                DO I = 1, N
  298:                   WORK( I ) = WORK( I ) * C( I )
  299:                END DO
  300:             END IF
  301:          ELSE
  302: *
  303: *           Multiply by inv(C**T).
  304: *
  305:             IF ( CMODE .EQ. 1 ) THEN
  306:                DO I = 1, N
  307:                   WORK( I ) = WORK( I ) / C( I )
  308:                END DO
  309:             ELSE IF ( CMODE .EQ. -1 ) THEN
  310:                DO I = 1, N
  311:                   WORK( I ) = WORK( I ) * C( I )
  312:                END DO
  313:             END IF
  314: 
  315:             IF ( UP ) THEN
  316:                CALL DSYTRS( 'U', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  317:             ELSE
  318:                CALL DSYTRS( 'L', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  319:             ENDIF
  320: *
  321: *           Multiply by R.
  322: *
  323:             DO I = 1, N
  324:                WORK( I ) = WORK( I ) * WORK( 2*N+I )
  325:             END DO
  326:          END IF
  327: *
  328:          GO TO 10
  329:       END IF
  330: *
  331: *     Compute the estimate of the reciprocal condition number.
  332: *
  333:       IF( AINVNM .NE. 0.0D+0 )
  334:      $   DLA_SYRCOND = ( 1.0D+0 / AINVNM )
  335: *
  336:       RETURN
  337: *
  338: *     End of DLA_SYRCOND
  339: *
  340:       END

CVSweb interface <joel.bertrand@systella.fr>