File:  [local] / rpl / lapack / lapack / dla_syrcond.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:28 2010 UTC (13 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       DOUBLE PRECISION FUNCTION DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, 
    2:      $                                       IPIV, CMODE, C, INFO, WORK,
    3:      $                                       IWORK )
    4: *
    5: *     -- LAPACK routine (version 3.2.1)                                 --
    6: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    7: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    8: *     -- April 2009                                                   --
    9: *
   10: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   11: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   12: *
   13:       IMPLICIT NONE
   14: *     ..
   15: *     .. Scalar Arguments ..
   16:       CHARACTER          UPLO
   17:       INTEGER            N, LDA, LDAF, INFO, CMODE
   18: *     ..
   19: *     .. Array Arguments
   20:       INTEGER            IWORK( * ), IPIV( * )
   21:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * ), C( * )
   22: *     ..
   23: *
   24: *  Purpose
   25: *  =======
   26: *
   27: *     DLA_SYRCOND estimates the Skeel condition number of  op(A) * op2(C)
   28: *     where op2 is determined by CMODE as follows
   29: *     CMODE =  1    op2(C) = C
   30: *     CMODE =  0    op2(C) = I
   31: *     CMODE = -1    op2(C) = inv(C)
   32: *     The Skeel condition number cond(A) = norminf( |inv(A)||A| )
   33: *     is computed by computing scaling factors R such that
   34: *     diag(R)*A*op2(C) is row equilibrated and computing the standard
   35: *     infinity-norm condition number.
   36: *
   37: *  Arguments
   38: *  ==========
   39: *
   40: *     UPLO    (input) CHARACTER*1
   41: *       = 'U':  Upper triangle of A is stored;
   42: *       = 'L':  Lower triangle of A is stored.
   43: *
   44: *     N       (input) INTEGER
   45: *     The number of linear equations, i.e., the order of the
   46: *     matrix A.  N >= 0.
   47: *
   48: *     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
   49: *     On entry, the N-by-N matrix A.
   50: *
   51: *     LDA     (input) INTEGER
   52: *     The leading dimension of the array A.  LDA >= max(1,N).
   53: *
   54: *     AF      (input) DOUBLE PRECISION array, dimension (LDAF,N)
   55: *     The block diagonal matrix D and the multipliers used to
   56: *     obtain the factor U or L as computed by DSYTRF.
   57: *
   58: *     LDAF    (input) INTEGER
   59: *     The leading dimension of the array AF.  LDAF >= max(1,N).
   60: *
   61: *     IPIV    (input) INTEGER array, dimension (N)
   62: *     Details of the interchanges and the block structure of D
   63: *     as determined by DSYTRF.
   64: *
   65: *     CMODE   (input) INTEGER
   66: *     Determines op2(C) in the formula op(A) * op2(C) as follows:
   67: *     CMODE =  1    op2(C) = C
   68: *     CMODE =  0    op2(C) = I
   69: *     CMODE = -1    op2(C) = inv(C)
   70: *
   71: *     C       (input) DOUBLE PRECISION array, dimension (N)
   72: *     The vector C in the formula op(A) * op2(C).
   73: *
   74: *     INFO    (output) INTEGER
   75: *       = 0:  Successful exit.
   76: *     i > 0:  The ith argument is invalid.
   77: *
   78: *     WORK    (input) DOUBLE PRECISION array, dimension (3*N).
   79: *     Workspace.
   80: *
   81: *     IWORK   (input) INTEGER array, dimension (N).
   82: *     Workspace.
   83: *
   84: *  =====================================================================
   85: *
   86: *     .. Local Scalars ..
   87:       CHARACTER          NORMIN
   88:       INTEGER            KASE, I, J
   89:       DOUBLE PRECISION   AINVNM, SMLNUM, TMP
   90:       LOGICAL            UP
   91: *     ..
   92: *     .. Local Arrays ..
   93:       INTEGER            ISAVE( 3 )
   94: *     ..
   95: *     .. External Functions ..
   96:       LOGICAL            LSAME
   97:       INTEGER            IDAMAX
   98:       DOUBLE PRECISION   DLAMCH
   99:       EXTERNAL           LSAME, IDAMAX, DLAMCH
  100: *     ..
  101: *     .. External Subroutines ..
  102:       EXTERNAL           DLACN2, DLATRS, DRSCL, XERBLA, DSYTRS
  103: *     ..
  104: *     .. Intrinsic Functions ..
  105:       INTRINSIC          ABS, MAX
  106: *     ..
  107: *     .. Executable Statements ..
  108: *
  109:       DLA_SYRCOND = 0.0D+0
  110: *
  111:       INFO = 0
  112:       IF( N.LT.0 ) THEN
  113:          INFO = -2
  114:       END IF
  115:       IF( INFO.NE.0 ) THEN
  116:          CALL XERBLA( 'DLA_SYRCOND', -INFO )
  117:          RETURN
  118:       END IF
  119:       IF( N.EQ.0 ) THEN
  120:          DLA_SYRCOND = 1.0D+0
  121:          RETURN
  122:       END IF
  123:       UP = .FALSE.
  124:       IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  125: *
  126: *     Compute the equilibration matrix R such that
  127: *     inv(R)*A*C has unit 1-norm.
  128: *
  129:       IF ( UP ) THEN
  130:          DO I = 1, N
  131:             TMP = 0.0D+0
  132:             IF ( CMODE .EQ. 1 ) THEN
  133:                DO J = 1, I
  134:                   TMP = TMP + ABS( A( J, I ) * C( J ) )
  135:                END DO
  136:                DO J = I+1, N
  137:                   TMP = TMP + ABS( A( I, J ) * C( J ) )
  138:                END DO
  139:             ELSE IF ( CMODE .EQ. 0 ) THEN
  140:                DO J = 1, I
  141:                   TMP = TMP + ABS( A( J, I ) )
  142:                END DO
  143:                DO J = I+1, N
  144:                   TMP = TMP + ABS( A( I, J ) )
  145:                END DO
  146:             ELSE
  147:                DO J = 1, I
  148:                   TMP = TMP + ABS( A( J, I ) / C( J ) )
  149:                END DO
  150:                DO J = I+1, N
  151:                   TMP = TMP + ABS( A( I, J ) / C( J ) )
  152:                END DO
  153:             END IF
  154:             WORK( 2*N+I ) = TMP
  155:          END DO
  156:       ELSE
  157:          DO I = 1, N
  158:             TMP = 0.0D+0
  159:             IF ( CMODE .EQ. 1 ) THEN
  160:                DO J = 1, I
  161:                   TMP = TMP + ABS( A( I, J ) * C( J ) )
  162:                END DO
  163:                DO J = I+1, N
  164:                   TMP = TMP + ABS( A( J, I ) * C( J ) )
  165:                END DO
  166:             ELSE IF ( CMODE .EQ. 0 ) THEN
  167:                DO J = 1, I
  168:                   TMP = TMP + ABS( A( I, J ) )
  169:                END DO
  170:                DO J = I+1, N
  171:                   TMP = TMP + ABS( A( J, I ) )
  172:                END DO
  173:             ELSE
  174:                DO J = 1, I
  175:                   TMP = TMP + ABS( A( I, J) / C( J ) )
  176:                END DO
  177:                DO J = I+1, N
  178:                   TMP = TMP + ABS( A( J, I) / C( J ) )
  179:                END DO
  180:             END IF
  181:             WORK( 2*N+I ) = TMP
  182:          END DO
  183:       ENDIF
  184: *
  185: *     Estimate the norm of inv(op(A)).
  186: *
  187:       SMLNUM = DLAMCH( 'Safe minimum' )
  188:       AINVNM = 0.0D+0
  189:       NORMIN = 'N'
  190: 
  191:       KASE = 0
  192:    10 CONTINUE
  193:       CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
  194:       IF( KASE.NE.0 ) THEN
  195:          IF( KASE.EQ.2 ) THEN
  196: *
  197: *           Multiply by R.
  198: *
  199:             DO I = 1, N
  200:                WORK( I ) = WORK( I ) * WORK( 2*N+I )
  201:             END DO
  202: 
  203:             IF ( UP ) THEN
  204:                CALL DSYTRS( 'U', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  205:             ELSE
  206:                CALL DSYTRS( 'L', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  207:             ENDIF
  208: *
  209: *           Multiply by inv(C).
  210: *
  211:             IF ( CMODE .EQ. 1 ) THEN
  212:                DO I = 1, N
  213:                   WORK( I ) = WORK( I ) / C( I )
  214:                END DO
  215:             ELSE IF ( CMODE .EQ. -1 ) THEN
  216:                DO I = 1, N
  217:                   WORK( I ) = WORK( I ) * C( I )
  218:                END DO
  219:             END IF
  220:          ELSE
  221: *
  222: *           Multiply by inv(C').
  223: *
  224:             IF ( CMODE .EQ. 1 ) THEN
  225:                DO I = 1, N
  226:                   WORK( I ) = WORK( I ) / C( I )
  227:                END DO
  228:             ELSE IF ( CMODE .EQ. -1 ) THEN
  229:                DO I = 1, N
  230:                   WORK( I ) = WORK( I ) * C( I )
  231:                END DO
  232:             END IF
  233: 
  234:             IF ( UP ) THEN
  235:                CALL DSYTRS( 'U', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  236:             ELSE
  237:                CALL DSYTRS( 'L', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  238:             ENDIF
  239: *
  240: *           Multiply by R.
  241: *
  242:             DO I = 1, N
  243:                WORK( I ) = WORK( I ) * WORK( 2*N+I )
  244:             END DO
  245:          END IF
  246: *
  247:          GO TO 10
  248:       END IF
  249: *
  250: *     Compute the estimate of the reciprocal condition number.
  251: *
  252:       IF( AINVNM .NE. 0.0D+0 )
  253:      $   DLA_SYRCOND = ( 1.0D+0 / AINVNM )
  254: *
  255:       RETURN
  256: *
  257:       END

CVSweb interface <joel.bertrand@systella.fr>