File:  [local] / rpl / lapack / lapack / dla_syrcond.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 12:30:21 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack vers la version 3.4.2 et des scripts de compilation
pour rplcas. En particulier, le Makefile.am de giac a été modifié pour ne
compiler que le répertoire src.

    1: *> \brief \b DLA_SYRCOND estimates the Skeel condition number for a symmetric indefinite matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLA_SYRCOND + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_syrcond.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_syrcond.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_syrcond.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, 
   22: *                                              IPIV, CMODE, C, INFO, WORK,
   23: *                                              IWORK )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          UPLO
   27: *       INTEGER            N, LDA, LDAF, INFO, CMODE
   28: *       ..
   29: *       .. Array Arguments
   30: *       INTEGER            IWORK( * ), IPIV( * )
   31: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * ), C( * )
   32: *       ..
   33: *  
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *>    DLA_SYRCOND estimates the Skeel condition number of  op(A) * op2(C)
   41: *>    where op2 is determined by CMODE as follows
   42: *>    CMODE =  1    op2(C) = C
   43: *>    CMODE =  0    op2(C) = I
   44: *>    CMODE = -1    op2(C) = inv(C)
   45: *>    The Skeel condition number cond(A) = norminf( |inv(A)||A| )
   46: *>    is computed by computing scaling factors R such that
   47: *>    diag(R)*A*op2(C) is row equilibrated and computing the standard
   48: *>    infinity-norm condition number.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] UPLO
   55: *> \verbatim
   56: *>          UPLO is CHARACTER*1
   57: *>       = 'U':  Upper triangle of A is stored;
   58: *>       = 'L':  Lower triangle of A is stored.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] N
   62: *> \verbatim
   63: *>          N is INTEGER
   64: *>     The number of linear equations, i.e., the order of the
   65: *>     matrix A.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] A
   69: *> \verbatim
   70: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   71: *>     On entry, the N-by-N matrix A.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] LDA
   75: *> \verbatim
   76: *>          LDA is INTEGER
   77: *>     The leading dimension of the array A.  LDA >= max(1,N).
   78: *> \endverbatim
   79: *>
   80: *> \param[in] AF
   81: *> \verbatim
   82: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
   83: *>     The block diagonal matrix D and the multipliers used to
   84: *>     obtain the factor U or L as computed by DSYTRF.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] LDAF
   88: *> \verbatim
   89: *>          LDAF is INTEGER
   90: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
   91: *> \endverbatim
   92: *>
   93: *> \param[in] IPIV
   94: *> \verbatim
   95: *>          IPIV is INTEGER array, dimension (N)
   96: *>     Details of the interchanges and the block structure of D
   97: *>     as determined by DSYTRF.
   98: *> \endverbatim
   99: *>
  100: *> \param[in] CMODE
  101: *> \verbatim
  102: *>          CMODE is INTEGER
  103: *>     Determines op2(C) in the formula op(A) * op2(C) as follows:
  104: *>     CMODE =  1    op2(C) = C
  105: *>     CMODE =  0    op2(C) = I
  106: *>     CMODE = -1    op2(C) = inv(C)
  107: *> \endverbatim
  108: *>
  109: *> \param[in] C
  110: *> \verbatim
  111: *>          C is DOUBLE PRECISION array, dimension (N)
  112: *>     The vector C in the formula op(A) * op2(C).
  113: *> \endverbatim
  114: *>
  115: *> \param[out] INFO
  116: *> \verbatim
  117: *>          INFO is INTEGER
  118: *>       = 0:  Successful exit.
  119: *>     i > 0:  The ith argument is invalid.
  120: *> \endverbatim
  121: *>
  122: *> \param[in] WORK
  123: *> \verbatim
  124: *>          WORK is DOUBLE PRECISION array, dimension (3*N).
  125: *>     Workspace.
  126: *> \endverbatim
  127: *>
  128: *> \param[in] IWORK
  129: *> \verbatim
  130: *>          IWORK is INTEGER array, dimension (N).
  131: *>     Workspace.
  132: *> \endverbatim
  133: *
  134: *  Authors:
  135: *  ========
  136: *
  137: *> \author Univ. of Tennessee 
  138: *> \author Univ. of California Berkeley 
  139: *> \author Univ. of Colorado Denver 
  140: *> \author NAG Ltd. 
  141: *
  142: *> \date September 2012
  143: *
  144: *> \ingroup doubleSYcomputational
  145: *
  146: *  =====================================================================
  147:       DOUBLE PRECISION FUNCTION DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, 
  148:      $                                       IPIV, CMODE, C, INFO, WORK,
  149:      $                                       IWORK )
  150: *
  151: *  -- LAPACK computational routine (version 3.4.2) --
  152: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  153: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  154: *     September 2012
  155: *
  156: *     .. Scalar Arguments ..
  157:       CHARACTER          UPLO
  158:       INTEGER            N, LDA, LDAF, INFO, CMODE
  159: *     ..
  160: *     .. Array Arguments
  161:       INTEGER            IWORK( * ), IPIV( * )
  162:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * ), C( * )
  163: *     ..
  164: *
  165: *  =====================================================================
  166: *
  167: *     .. Local Scalars ..
  168:       CHARACTER          NORMIN
  169:       INTEGER            KASE, I, J
  170:       DOUBLE PRECISION   AINVNM, SMLNUM, TMP
  171:       LOGICAL            UP
  172: *     ..
  173: *     .. Local Arrays ..
  174:       INTEGER            ISAVE( 3 )
  175: *     ..
  176: *     .. External Functions ..
  177:       LOGICAL            LSAME
  178:       INTEGER            IDAMAX
  179:       DOUBLE PRECISION   DLAMCH
  180:       EXTERNAL           LSAME, IDAMAX, DLAMCH
  181: *     ..
  182: *     .. External Subroutines ..
  183:       EXTERNAL           DLACN2, DLATRS, DRSCL, XERBLA, DSYTRS
  184: *     ..
  185: *     .. Intrinsic Functions ..
  186:       INTRINSIC          ABS, MAX
  187: *     ..
  188: *     .. Executable Statements ..
  189: *
  190:       DLA_SYRCOND = 0.0D+0
  191: *
  192:       INFO = 0
  193:       IF( N.LT.0 ) THEN
  194:          INFO = -2
  195:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  196:          INFO = -4
  197:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  198:          INFO = -6
  199:       END IF
  200:       IF( INFO.NE.0 ) THEN
  201:          CALL XERBLA( 'DLA_SYRCOND', -INFO )
  202:          RETURN
  203:       END IF
  204:       IF( N.EQ.0 ) THEN
  205:          DLA_SYRCOND = 1.0D+0
  206:          RETURN
  207:       END IF
  208:       UP = .FALSE.
  209:       IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  210: *
  211: *     Compute the equilibration matrix R such that
  212: *     inv(R)*A*C has unit 1-norm.
  213: *
  214:       IF ( UP ) THEN
  215:          DO I = 1, N
  216:             TMP = 0.0D+0
  217:             IF ( CMODE .EQ. 1 ) THEN
  218:                DO J = 1, I
  219:                   TMP = TMP + ABS( A( J, I ) * C( J ) )
  220:                END DO
  221:                DO J = I+1, N
  222:                   TMP = TMP + ABS( A( I, J ) * C( J ) )
  223:                END DO
  224:             ELSE IF ( CMODE .EQ. 0 ) THEN
  225:                DO J = 1, I
  226:                   TMP = TMP + ABS( A( J, I ) )
  227:                END DO
  228:                DO J = I+1, N
  229:                   TMP = TMP + ABS( A( I, J ) )
  230:                END DO
  231:             ELSE
  232:                DO J = 1, I
  233:                   TMP = TMP + ABS( A( J, I ) / C( J ) )
  234:                END DO
  235:                DO J = I+1, N
  236:                   TMP = TMP + ABS( A( I, J ) / C( J ) )
  237:                END DO
  238:             END IF
  239:             WORK( 2*N+I ) = TMP
  240:          END DO
  241:       ELSE
  242:          DO I = 1, N
  243:             TMP = 0.0D+0
  244:             IF ( CMODE .EQ. 1 ) THEN
  245:                DO J = 1, I
  246:                   TMP = TMP + ABS( A( I, J ) * C( J ) )
  247:                END DO
  248:                DO J = I+1, N
  249:                   TMP = TMP + ABS( A( J, I ) * C( J ) )
  250:                END DO
  251:             ELSE IF ( CMODE .EQ. 0 ) THEN
  252:                DO J = 1, I
  253:                   TMP = TMP + ABS( A( I, J ) )
  254:                END DO
  255:                DO J = I+1, N
  256:                   TMP = TMP + ABS( A( J, I ) )
  257:                END DO
  258:             ELSE
  259:                DO J = 1, I
  260:                   TMP = TMP + ABS( A( I, J) / C( J ) )
  261:                END DO
  262:                DO J = I+1, N
  263:                   TMP = TMP + ABS( A( J, I) / C( J ) )
  264:                END DO
  265:             END IF
  266:             WORK( 2*N+I ) = TMP
  267:          END DO
  268:       ENDIF
  269: *
  270: *     Estimate the norm of inv(op(A)).
  271: *
  272:       SMLNUM = DLAMCH( 'Safe minimum' )
  273:       AINVNM = 0.0D+0
  274:       NORMIN = 'N'
  275: 
  276:       KASE = 0
  277:    10 CONTINUE
  278:       CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
  279:       IF( KASE.NE.0 ) THEN
  280:          IF( KASE.EQ.2 ) THEN
  281: *
  282: *           Multiply by R.
  283: *
  284:             DO I = 1, N
  285:                WORK( I ) = WORK( I ) * WORK( 2*N+I )
  286:             END DO
  287: 
  288:             IF ( UP ) THEN
  289:                CALL DSYTRS( 'U', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  290:             ELSE
  291:                CALL DSYTRS( 'L', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  292:             ENDIF
  293: *
  294: *           Multiply by inv(C).
  295: *
  296:             IF ( CMODE .EQ. 1 ) THEN
  297:                DO I = 1, N
  298:                   WORK( I ) = WORK( I ) / C( I )
  299:                END DO
  300:             ELSE IF ( CMODE .EQ. -1 ) THEN
  301:                DO I = 1, N
  302:                   WORK( I ) = WORK( I ) * C( I )
  303:                END DO
  304:             END IF
  305:          ELSE
  306: *
  307: *           Multiply by inv(C**T).
  308: *
  309:             IF ( CMODE .EQ. 1 ) THEN
  310:                DO I = 1, N
  311:                   WORK( I ) = WORK( I ) / C( I )
  312:                END DO
  313:             ELSE IF ( CMODE .EQ. -1 ) THEN
  314:                DO I = 1, N
  315:                   WORK( I ) = WORK( I ) * C( I )
  316:                END DO
  317:             END IF
  318: 
  319:             IF ( UP ) THEN
  320:                CALL DSYTRS( 'U', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  321:             ELSE
  322:                CALL DSYTRS( 'L', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  323:             ENDIF
  324: *
  325: *           Multiply by R.
  326: *
  327:             DO I = 1, N
  328:                WORK( I ) = WORK( I ) * WORK( 2*N+I )
  329:             END DO
  330:          END IF
  331: *
  332:          GO TO 10
  333:       END IF
  334: *
  335: *     Compute the estimate of the reciprocal condition number.
  336: *
  337:       IF( AINVNM .NE. 0.0D+0 )
  338:      $   DLA_SYRCOND = ( 1.0D+0 / AINVNM )
  339: *
  340:       RETURN
  341: *
  342:       END

CVSweb interface <joel.bertrand@systella.fr>