File:  [local] / rpl / lapack / lapack / dla_syamv.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:52 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLA_SYAMV computes a matrix-vector product using a symmetric indefinite matrix to calculate error bounds.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLA_SYAMV + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_syamv.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_syamv.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_syamv.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLA_SYAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
   22: *                             INCY )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       DOUBLE PRECISION   ALPHA, BETA
   26: *       INTEGER            INCX, INCY, LDA, N, UPLO
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), X( * ), Y( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DLA_SYAMV  performs the matrix-vector operation
   39: *>
   40: *>         y := alpha*abs(A)*abs(x) + beta*abs(y),
   41: *>
   42: *> where alpha and beta are scalars, x and y are vectors and A is an
   43: *> n by n symmetric matrix.
   44: *>
   45: *> This function is primarily used in calculating error bounds.
   46: *> To protect against underflow during evaluation, components in
   47: *> the resulting vector are perturbed away from zero by (N+1)
   48: *> times the underflow threshold.  To prevent unnecessarily large
   49: *> errors for block-structure embedded in general matrices,
   50: *> "symbolically" zero components are not perturbed.  A zero
   51: *> entry is considered "symbolic" if all multiplications involved
   52: *> in computing that entry have at least one zero multiplicand.
   53: *> \endverbatim
   54: *
   55: *  Arguments:
   56: *  ==========
   57: *
   58: *> \param[in] UPLO
   59: *> \verbatim
   60: *>          UPLO is INTEGER
   61: *>           On entry, UPLO specifies whether the upper or lower
   62: *>           triangular part of the array A is to be referenced as
   63: *>           follows:
   64: *>
   65: *>              UPLO = BLAS_UPPER   Only the upper triangular part of A
   66: *>                                  is to be referenced.
   67: *>
   68: *>              UPLO = BLAS_LOWER   Only the lower triangular part of A
   69: *>                                  is to be referenced.
   70: *>
   71: *>           Unchanged on exit.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] N
   75: *> \verbatim
   76: *>          N is INTEGER
   77: *>           On entry, N specifies the number of columns of the matrix A.
   78: *>           N must be at least zero.
   79: *>           Unchanged on exit.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] ALPHA
   83: *> \verbatim
   84: *>          ALPHA is DOUBLE PRECISION .
   85: *>           On entry, ALPHA specifies the scalar alpha.
   86: *>           Unchanged on exit.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] A
   90: *> \verbatim
   91: *>          A is DOUBLE PRECISION array, dimension ( LDA, n ).
   92: *>           Before entry, the leading m by n part of the array A must
   93: *>           contain the matrix of coefficients.
   94: *>           Unchanged on exit.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] LDA
   98: *> \verbatim
   99: *>          LDA is INTEGER
  100: *>           On entry, LDA specifies the first dimension of A as declared
  101: *>           in the calling (sub) program. LDA must be at least
  102: *>           max( 1, n ).
  103: *>           Unchanged on exit.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] X
  107: *> \verbatim
  108: *>          X is DOUBLE PRECISION array, dimension
  109: *>           ( 1 + ( n - 1 )*abs( INCX ) )
  110: *>           Before entry, the incremented array X must contain the
  111: *>           vector x.
  112: *>           Unchanged on exit.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] INCX
  116: *> \verbatim
  117: *>          INCX is INTEGER
  118: *>           On entry, INCX specifies the increment for the elements of
  119: *>           X. INCX must not be zero.
  120: *>           Unchanged on exit.
  121: *> \endverbatim
  122: *>
  123: *> \param[in] BETA
  124: *> \verbatim
  125: *>          BETA is DOUBLE PRECISION .
  126: *>           On entry, BETA specifies the scalar beta. When BETA is
  127: *>           supplied as zero then Y need not be set on input.
  128: *>           Unchanged on exit.
  129: *> \endverbatim
  130: *>
  131: *> \param[in,out] Y
  132: *> \verbatim
  133: *>          Y is DOUBLE PRECISION array, dimension
  134: *>           ( 1 + ( n - 1 )*abs( INCY ) )
  135: *>           Before entry with BETA non-zero, the incremented array Y
  136: *>           must contain the vector y. On exit, Y is overwritten by the
  137: *>           updated vector y.
  138: *> \endverbatim
  139: *>
  140: *> \param[in] INCY
  141: *> \verbatim
  142: *>          INCY is INTEGER
  143: *>           On entry, INCY specifies the increment for the elements of
  144: *>           Y. INCY must not be zero.
  145: *>           Unchanged on exit.
  146: *> \endverbatim
  147: *
  148: *  Authors:
  149: *  ========
  150: *
  151: *> \author Univ. of Tennessee
  152: *> \author Univ. of California Berkeley
  153: *> \author Univ. of Colorado Denver
  154: *> \author NAG Ltd.
  155: *
  156: *> \ingroup doubleSYcomputational
  157: *
  158: *> \par Further Details:
  159: *  =====================
  160: *>
  161: *> \verbatim
  162: *>
  163: *>  Level 2 Blas routine.
  164: *>
  165: *>  -- Written on 22-October-1986.
  166: *>     Jack Dongarra, Argonne National Lab.
  167: *>     Jeremy Du Croz, Nag Central Office.
  168: *>     Sven Hammarling, Nag Central Office.
  169: *>     Richard Hanson, Sandia National Labs.
  170: *>  -- Modified for the absolute-value product, April 2006
  171: *>     Jason Riedy, UC Berkeley
  172: *> \endverbatim
  173: *>
  174: *  =====================================================================
  175:       SUBROUTINE DLA_SYAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
  176:      $                      INCY )
  177: *
  178: *  -- LAPACK computational routine --
  179: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  180: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  181: *
  182: *     .. Scalar Arguments ..
  183:       DOUBLE PRECISION   ALPHA, BETA
  184:       INTEGER            INCX, INCY, LDA, N, UPLO
  185: *     ..
  186: *     .. Array Arguments ..
  187:       DOUBLE PRECISION   A( LDA, * ), X( * ), Y( * )
  188: *     ..
  189: *
  190: *  =====================================================================
  191: *
  192: *     .. Parameters ..
  193:       DOUBLE PRECISION   ONE, ZERO
  194:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  195: *     ..
  196: *     .. Local Scalars ..
  197:       LOGICAL            SYMB_ZERO
  198:       DOUBLE PRECISION   TEMP, SAFE1
  199:       INTEGER            I, INFO, IY, J, JX, KX, KY
  200: *     ..
  201: *     .. External Subroutines ..
  202:       EXTERNAL           XERBLA, DLAMCH
  203:       DOUBLE PRECISION   DLAMCH
  204: *     ..
  205: *     .. External Functions ..
  206:       EXTERNAL           ILAUPLO
  207:       INTEGER            ILAUPLO
  208: *     ..
  209: *     .. Intrinsic Functions ..
  210:       INTRINSIC          MAX, ABS, SIGN
  211: *     ..
  212: *     .. Executable Statements ..
  213: *
  214: *     Test the input parameters.
  215: *
  216:       INFO = 0
  217:       IF     ( UPLO.NE.ILAUPLO( 'U' ) .AND.
  218:      $         UPLO.NE.ILAUPLO( 'L' ) ) THEN
  219:          INFO = 1
  220:       ELSE IF( N.LT.0 )THEN
  221:          INFO = 2
  222:       ELSE IF( LDA.LT.MAX( 1, N ) )THEN
  223:          INFO = 5
  224:       ELSE IF( INCX.EQ.0 )THEN
  225:          INFO = 7
  226:       ELSE IF( INCY.EQ.0 )THEN
  227:          INFO = 10
  228:       END IF
  229:       IF( INFO.NE.0 )THEN
  230:          CALL XERBLA( 'DLA_SYAMV', INFO )
  231:          RETURN
  232:       END IF
  233: *
  234: *     Quick return if possible.
  235: *
  236:       IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  237:      $   RETURN
  238: *
  239: *     Set up the start points in  X  and  Y.
  240: *
  241:       IF( INCX.GT.0 )THEN
  242:          KX = 1
  243:       ELSE
  244:          KX = 1 - ( N - 1 )*INCX
  245:       END IF
  246:       IF( INCY.GT.0 )THEN
  247:          KY = 1
  248:       ELSE
  249:          KY = 1 - ( N - 1 )*INCY
  250:       END IF
  251: *
  252: *     Set SAFE1 essentially to be the underflow threshold times the
  253: *     number of additions in each row.
  254: *
  255:       SAFE1 = DLAMCH( 'Safe minimum' )
  256:       SAFE1 = (N+1)*SAFE1
  257: *
  258: *     Form  y := alpha*abs(A)*abs(x) + beta*abs(y).
  259: *
  260: *     The O(N^2) SYMB_ZERO tests could be replaced by O(N) queries to
  261: *     the inexact flag.  Still doesn't help change the iteration order
  262: *     to per-column.
  263: *
  264:       IY = KY
  265:       IF ( INCX.EQ.1 ) THEN
  266:          IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
  267:             DO I = 1, N
  268:                IF ( BETA .EQ. ZERO ) THEN
  269:                   SYMB_ZERO = .TRUE.
  270:                   Y( IY ) = 0.0D+0
  271:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  272:                   SYMB_ZERO = .TRUE.
  273:                ELSE
  274:                   SYMB_ZERO = .FALSE.
  275:                   Y( IY ) = BETA * ABS( Y( IY ) )
  276:                END IF
  277:                IF ( ALPHA .NE. ZERO ) THEN
  278:                   DO J = 1, I
  279:                      TEMP = ABS( A( J, I ) )
  280:                      SYMB_ZERO = SYMB_ZERO .AND.
  281:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  282: 
  283:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
  284:                   END DO
  285:                   DO J = I+1, N
  286:                      TEMP = ABS( A( I, J ) )
  287:                      SYMB_ZERO = SYMB_ZERO .AND.
  288:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  289: 
  290:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
  291:                   END DO
  292:                END IF
  293: 
  294:                IF ( .NOT.SYMB_ZERO )
  295:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  296: 
  297:                IY = IY + INCY
  298:             END DO
  299:          ELSE
  300:             DO I = 1, N
  301:                IF ( BETA .EQ. ZERO ) THEN
  302:                   SYMB_ZERO = .TRUE.
  303:                   Y( IY ) = 0.0D+0
  304:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  305:                   SYMB_ZERO = .TRUE.
  306:                ELSE
  307:                   SYMB_ZERO = .FALSE.
  308:                   Y( IY ) = BETA * ABS( Y( IY ) )
  309:                END IF
  310:                IF ( ALPHA .NE. ZERO ) THEN
  311:                   DO J = 1, I
  312:                      TEMP = ABS( A( I, J ) )
  313:                      SYMB_ZERO = SYMB_ZERO .AND.
  314:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  315: 
  316:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
  317:                   END DO
  318:                   DO J = I+1, N
  319:                      TEMP = ABS( A( J, I ) )
  320:                      SYMB_ZERO = SYMB_ZERO .AND.
  321:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  322: 
  323:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
  324:                   END DO
  325:                END IF
  326: 
  327:                IF ( .NOT.SYMB_ZERO )
  328:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  329: 
  330:                IY = IY + INCY
  331:             END DO
  332:          END IF
  333:       ELSE
  334:          IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
  335:             DO I = 1, N
  336:                IF ( BETA .EQ. ZERO ) THEN
  337:                   SYMB_ZERO = .TRUE.
  338:                   Y( IY ) = 0.0D+0
  339:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  340:                   SYMB_ZERO = .TRUE.
  341:                ELSE
  342:                   SYMB_ZERO = .FALSE.
  343:                   Y( IY ) = BETA * ABS( Y( IY ) )
  344:                END IF
  345:                JX = KX
  346:                IF ( ALPHA .NE. ZERO ) THEN
  347:                   DO J = 1, I
  348:                      TEMP = ABS( A( J, I ) )
  349:                      SYMB_ZERO = SYMB_ZERO .AND.
  350:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  351: 
  352:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
  353:                      JX = JX + INCX
  354:                   END DO
  355:                   DO J = I+1, N
  356:                      TEMP = ABS( A( I, J ) )
  357:                      SYMB_ZERO = SYMB_ZERO .AND.
  358:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  359: 
  360:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
  361:                      JX = JX + INCX
  362:                   END DO
  363:                END IF
  364: 
  365:                IF ( .NOT.SYMB_ZERO )
  366:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  367: 
  368:                IY = IY + INCY
  369:             END DO
  370:          ELSE
  371:             DO I = 1, N
  372:                IF ( BETA .EQ. ZERO ) THEN
  373:                   SYMB_ZERO = .TRUE.
  374:                   Y( IY ) = 0.0D+0
  375:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  376:                   SYMB_ZERO = .TRUE.
  377:                ELSE
  378:                   SYMB_ZERO = .FALSE.
  379:                   Y( IY ) = BETA * ABS( Y( IY ) )
  380:                END IF
  381:                JX = KX
  382:                IF ( ALPHA .NE. ZERO ) THEN
  383:                   DO J = 1, I
  384:                      TEMP = ABS( A( I, J ) )
  385:                      SYMB_ZERO = SYMB_ZERO .AND.
  386:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  387: 
  388:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
  389:                      JX = JX + INCX
  390:                   END DO
  391:                   DO J = I+1, N
  392:                      TEMP = ABS( A( J, I ) )
  393:                      SYMB_ZERO = SYMB_ZERO .AND.
  394:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  395: 
  396:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
  397:                      JX = JX + INCX
  398:                   END DO
  399:                END IF
  400: 
  401:                IF ( .NOT.SYMB_ZERO )
  402:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  403: 
  404:                IY = IY + INCY
  405:             END DO
  406:          END IF
  407: 
  408:       END IF
  409: *
  410:       RETURN
  411: *
  412: *     End of DLA_SYAMV
  413: *
  414:       END

CVSweb interface <joel.bertrand@systella.fr>