Annotation of rpl/lapack/lapack/dla_porpvgrw.f, revision 1.9

1.8       bertrand    1: *> \brief \b DLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
1.5       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLA_PORPVGRW + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_porpvgrw.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_porpvgrw.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_porpvgrw.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       DOUBLE PRECISION FUNCTION DLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF, 
                     22: *                                               LDAF, WORK )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER*1        UPLO
                     26: *       INTEGER            NCOLS, LDA, LDAF
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * )
                     30: *       ..
                     31: *  
                     32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> 
                     39: *> DLA_PORPVGRW computes the reciprocal pivot growth factor
                     40: *> norm(A)/norm(U). The "max absolute element" norm is used. If this is
                     41: *> much less than 1, the stability of the LU factorization of the
                     42: *> (equilibrated) matrix A could be poor. This also means that the
                     43: *> solution X, estimated condition numbers, and error bounds could be
                     44: *> unreliable.
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] UPLO
                     51: *> \verbatim
                     52: *>          UPLO is CHARACTER*1
                     53: *>       = 'U':  Upper triangle of A is stored;
                     54: *>       = 'L':  Lower triangle of A is stored.
                     55: *> \endverbatim
                     56: *>
                     57: *> \param[in] NCOLS
                     58: *> \verbatim
                     59: *>          NCOLS is INTEGER
                     60: *>     The number of columns of the matrix A. NCOLS >= 0.
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[in] A
                     64: *> \verbatim
                     65: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     66: *>     On entry, the N-by-N matrix A.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] LDA
                     70: *> \verbatim
                     71: *>          LDA is INTEGER
                     72: *>     The leading dimension of the array A.  LDA >= max(1,N).
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] AF
                     76: *> \verbatim
                     77: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
                     78: *>     The triangular factor U or L from the Cholesky factorization
                     79: *>     A = U**T*U or A = L*L**T, as computed by DPOTRF.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] LDAF
                     83: *> \verbatim
                     84: *>          LDAF is INTEGER
                     85: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in] WORK
                     89: *> \verbatim
                     90: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
                     91: *> \endverbatim
                     92: *
                     93: *  Authors:
                     94: *  ========
                     95: *
                     96: *> \author Univ. of Tennessee 
                     97: *> \author Univ. of California Berkeley 
                     98: *> \author Univ. of Colorado Denver 
                     99: *> \author NAG Ltd. 
                    100: *
1.8       bertrand  101: *> \date September 2012
1.5       bertrand  102: *
                    103: *> \ingroup doublePOcomputational
                    104: *
                    105: *  =====================================================================
1.1       bertrand  106:       DOUBLE PRECISION FUNCTION DLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF, 
                    107:      $                                        LDAF, WORK )
                    108: *
1.8       bertrand  109: *  -- LAPACK computational routine (version 3.4.2) --
1.5       bertrand  110: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    111: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  112: *     September 2012
1.1       bertrand  113: *
                    114: *     .. Scalar Arguments ..
                    115:       CHARACTER*1        UPLO
                    116:       INTEGER            NCOLS, LDA, LDAF
                    117: *     ..
                    118: *     .. Array Arguments ..
                    119:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * )
                    120: *     ..
                    121: *
                    122: *  =====================================================================
                    123: *
                    124: *     .. Local Scalars ..
                    125:       INTEGER            I, J
                    126:       DOUBLE PRECISION   AMAX, UMAX, RPVGRW
                    127:       LOGICAL            UPPER
                    128: *     ..
                    129: *     .. Intrinsic Functions ..
                    130:       INTRINSIC          ABS, MAX, MIN
                    131: *     ..
                    132: *     .. External Functions ..
                    133:       EXTERNAL           LSAME, DLASET
                    134:       LOGICAL            LSAME
                    135: *     ..
                    136: *     .. Executable Statements ..
                    137: *
                    138:       UPPER = LSAME( 'Upper', UPLO )
                    139: *
                    140: *     DPOTRF will have factored only the NCOLSxNCOLS leading minor, so
                    141: *     we restrict the growth search to that minor and use only the first
                    142: *     2*NCOLS workspace entries.
                    143: *
                    144:       RPVGRW = 1.0D+0
                    145:       DO I = 1, 2*NCOLS
                    146:          WORK( I ) = 0.0D+0
                    147:       END DO
                    148: *
                    149: *     Find the max magnitude entry of each column.
                    150: *
                    151:       IF ( UPPER ) THEN
                    152:          DO J = 1, NCOLS
                    153:             DO I = 1, J
                    154:                WORK( NCOLS+J ) =
                    155:      $              MAX( ABS( A( I, J ) ), WORK( NCOLS+J ) )
                    156:             END DO
                    157:          END DO
                    158:       ELSE
                    159:          DO J = 1, NCOLS
                    160:             DO I = J, NCOLS
                    161:                WORK( NCOLS+J ) =
                    162:      $              MAX( ABS( A( I, J ) ), WORK( NCOLS+J ) )
                    163:             END DO
                    164:          END DO
                    165:       END IF
                    166: *
                    167: *     Now find the max magnitude entry of each column of the factor in
                    168: *     AF.  No pivoting, so no permutations.
                    169: *
                    170:       IF ( LSAME( 'Upper', UPLO ) ) THEN
                    171:          DO J = 1, NCOLS
                    172:             DO I = 1, J
                    173:                WORK( J ) = MAX( ABS( AF( I, J ) ), WORK( J ) )
                    174:             END DO
                    175:          END DO
                    176:       ELSE
                    177:          DO J = 1, NCOLS
                    178:             DO I = J, NCOLS
                    179:                WORK( J ) = MAX( ABS( AF( I, J ) ), WORK( J ) )
                    180:             END DO
                    181:          END DO
                    182:       END IF
                    183: *
                    184: *     Compute the *inverse* of the max element growth factor.  Dividing
                    185: *     by zero would imply the largest entry of the factor's column is
                    186: *     zero.  Than can happen when either the column of A is zero or
                    187: *     massive pivots made the factor underflow to zero.  Neither counts
                    188: *     as growth in itself, so simply ignore terms with zero
                    189: *     denominators.
                    190: *
                    191:       IF ( LSAME( 'Upper', UPLO ) ) THEN
                    192:          DO I = 1, NCOLS
                    193:             UMAX = WORK( I )
                    194:             AMAX = WORK( NCOLS+I )
                    195:             IF ( UMAX /= 0.0D+0 ) THEN
                    196:                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
                    197:             END IF
                    198:          END DO
                    199:       ELSE
                    200:          DO I = 1, NCOLS
                    201:             UMAX = WORK( I )
                    202:             AMAX = WORK( NCOLS+I )
                    203:             IF ( UMAX /= 0.0D+0 ) THEN
                    204:                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
                    205:             END IF
                    206:          END DO
                    207:       END IF
                    208: 
                    209:       DLA_PORPVGRW = RPVGRW
                    210:       END

CVSweb interface <joel.bertrand@systella.fr>