Annotation of rpl/lapack/lapack/dla_porpvgrw.f, revision 1.16

1.8       bertrand    1: *> \brief \b DLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
1.5       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.12      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.5       bertrand    7: *
                      8: *> \htmlonly
1.12      bertrand    9: *> Download DLA_PORPVGRW + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_porpvgrw.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_porpvgrw.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_porpvgrw.f">
1.5       bertrand   15: *> [TXT]</a>
1.12      bertrand   16: *> \endhtmlonly
1.5       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
1.12      bertrand   21: *       DOUBLE PRECISION FUNCTION DLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF,
1.5       bertrand   22: *                                               LDAF, WORK )
1.12      bertrand   23: *
1.5       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER*1        UPLO
                     26: *       INTEGER            NCOLS, LDA, LDAF
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * )
                     30: *       ..
1.12      bertrand   31: *
1.5       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
1.12      bertrand   38: *>
1.5       bertrand   39: *> DLA_PORPVGRW computes the reciprocal pivot growth factor
                     40: *> norm(A)/norm(U). The "max absolute element" norm is used. If this is
                     41: *> much less than 1, the stability of the LU factorization of the
                     42: *> (equilibrated) matrix A could be poor. This also means that the
                     43: *> solution X, estimated condition numbers, and error bounds could be
                     44: *> unreliable.
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] UPLO
                     51: *> \verbatim
                     52: *>          UPLO is CHARACTER*1
                     53: *>       = 'U':  Upper triangle of A is stored;
                     54: *>       = 'L':  Lower triangle of A is stored.
                     55: *> \endverbatim
                     56: *>
                     57: *> \param[in] NCOLS
                     58: *> \verbatim
                     59: *>          NCOLS is INTEGER
                     60: *>     The number of columns of the matrix A. NCOLS >= 0.
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[in] A
                     64: *> \verbatim
                     65: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     66: *>     On entry, the N-by-N matrix A.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] LDA
                     70: *> \verbatim
                     71: *>          LDA is INTEGER
                     72: *>     The leading dimension of the array A.  LDA >= max(1,N).
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] AF
                     76: *> \verbatim
                     77: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
                     78: *>     The triangular factor U or L from the Cholesky factorization
                     79: *>     A = U**T*U or A = L*L**T, as computed by DPOTRF.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] LDAF
                     83: *> \verbatim
                     84: *>          LDAF is INTEGER
                     85: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
                     86: *> \endverbatim
                     87: *>
1.15      bertrand   88: *> \param[out] WORK
1.5       bertrand   89: *> \verbatim
                     90: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
                     91: *> \endverbatim
                     92: *
                     93: *  Authors:
                     94: *  ========
                     95: *
1.12      bertrand   96: *> \author Univ. of Tennessee
                     97: *> \author Univ. of California Berkeley
                     98: *> \author Univ. of Colorado Denver
                     99: *> \author NAG Ltd.
1.5       bertrand  100: *
                    101: *> \ingroup doublePOcomputational
                    102: *
                    103: *  =====================================================================
1.12      bertrand  104:       DOUBLE PRECISION FUNCTION DLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF,
1.1       bertrand  105:      $                                        LDAF, WORK )
                    106: *
1.16    ! bertrand  107: *  -- LAPACK computational routine --
1.5       bertrand  108: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    109: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.1       bertrand  110: *
                    111: *     .. Scalar Arguments ..
                    112:       CHARACTER*1        UPLO
                    113:       INTEGER            NCOLS, LDA, LDAF
                    114: *     ..
                    115: *     .. Array Arguments ..
                    116:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * )
                    117: *     ..
                    118: *
                    119: *  =====================================================================
                    120: *
                    121: *     .. Local Scalars ..
                    122:       INTEGER            I, J
                    123:       DOUBLE PRECISION   AMAX, UMAX, RPVGRW
                    124:       LOGICAL            UPPER
                    125: *     ..
                    126: *     .. Intrinsic Functions ..
                    127:       INTRINSIC          ABS, MAX, MIN
                    128: *     ..
                    129: *     .. External Functions ..
1.12      bertrand  130:       EXTERNAL           LSAME
1.1       bertrand  131:       LOGICAL            LSAME
                    132: *     ..
                    133: *     .. Executable Statements ..
                    134: *
                    135:       UPPER = LSAME( 'Upper', UPLO )
                    136: *
                    137: *     DPOTRF will have factored only the NCOLSxNCOLS leading minor, so
                    138: *     we restrict the growth search to that minor and use only the first
                    139: *     2*NCOLS workspace entries.
                    140: *
                    141:       RPVGRW = 1.0D+0
                    142:       DO I = 1, 2*NCOLS
                    143:          WORK( I ) = 0.0D+0
                    144:       END DO
                    145: *
                    146: *     Find the max magnitude entry of each column.
                    147: *
                    148:       IF ( UPPER ) THEN
                    149:          DO J = 1, NCOLS
                    150:             DO I = 1, J
                    151:                WORK( NCOLS+J ) =
                    152:      $              MAX( ABS( A( I, J ) ), WORK( NCOLS+J ) )
                    153:             END DO
                    154:          END DO
                    155:       ELSE
                    156:          DO J = 1, NCOLS
                    157:             DO I = J, NCOLS
                    158:                WORK( NCOLS+J ) =
                    159:      $              MAX( ABS( A( I, J ) ), WORK( NCOLS+J ) )
                    160:             END DO
                    161:          END DO
                    162:       END IF
                    163: *
                    164: *     Now find the max magnitude entry of each column of the factor in
                    165: *     AF.  No pivoting, so no permutations.
                    166: *
                    167:       IF ( LSAME( 'Upper', UPLO ) ) THEN
                    168:          DO J = 1, NCOLS
                    169:             DO I = 1, J
                    170:                WORK( J ) = MAX( ABS( AF( I, J ) ), WORK( J ) )
                    171:             END DO
                    172:          END DO
                    173:       ELSE
                    174:          DO J = 1, NCOLS
                    175:             DO I = J, NCOLS
                    176:                WORK( J ) = MAX( ABS( AF( I, J ) ), WORK( J ) )
                    177:             END DO
                    178:          END DO
                    179:       END IF
                    180: *
                    181: *     Compute the *inverse* of the max element growth factor.  Dividing
                    182: *     by zero would imply the largest entry of the factor's column is
                    183: *     zero.  Than can happen when either the column of A is zero or
                    184: *     massive pivots made the factor underflow to zero.  Neither counts
                    185: *     as growth in itself, so simply ignore terms with zero
                    186: *     denominators.
                    187: *
                    188:       IF ( LSAME( 'Upper', UPLO ) ) THEN
                    189:          DO I = 1, NCOLS
                    190:             UMAX = WORK( I )
                    191:             AMAX = WORK( NCOLS+I )
                    192:             IF ( UMAX /= 0.0D+0 ) THEN
                    193:                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
                    194:             END IF
                    195:          END DO
                    196:       ELSE
                    197:          DO I = 1, NCOLS
                    198:             UMAX = WORK( I )
                    199:             AMAX = WORK( NCOLS+I )
                    200:             IF ( UMAX /= 0.0D+0 ) THEN
                    201:                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
                    202:             END IF
                    203:          END DO
                    204:       END IF
                    205: 
                    206:       DLA_PORPVGRW = RPVGRW
1.16    ! bertrand  207: *
        !           208: *     End of DLA_PORPVGRW
        !           209: *
1.1       bertrand  210:       END

CVSweb interface <joel.bertrand@systella.fr>