File:  [local] / rpl / lapack / lapack / dla_porfsx_extended.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:15 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE DLA_PORFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
    2:      $                                AF, LDAF, COLEQU, C, B, LDB, Y,
    3:      $                                LDY, BERR_OUT, N_NORMS,
    4:      $                                ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
    5:      $                                AYB, DY, Y_TAIL, RCOND, ITHRESH,
    6:      $                                RTHRESH, DZ_UB, IGNORE_CWISE,
    7:      $                                INFO )
    8: *
    9: *     -- LAPACK routine (version 3.2.2)                                 --
   10: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
   11: *     -- Jason Riedy of Univ. of California Berkeley.                 --
   12: *     -- June 2010                                                    --
   13: *
   14: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   15: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   16: *
   17:       IMPLICIT NONE
   18: *     ..
   19: *     .. Scalar Arguments ..
   20:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
   21:      $                   N_NORMS, ITHRESH
   22:       CHARACTER          UPLO
   23:       LOGICAL            COLEQU, IGNORE_CWISE
   24:       DOUBLE PRECISION   RTHRESH, DZ_UB
   25: *     ..
   26: *     .. Array Arguments ..
   27:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   28:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
   29:       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
   30:      $                   ERR_BNDS_NORM( NRHS, * ),
   31:      $                   ERR_BNDS_COMP( NRHS, * )
   32: *     ..
   33: *
   34: *  Purpose
   35: *  =======
   36: *
   37: *  DLA_PORFSX_EXTENDED improves the computed solution to a system of
   38: *  linear equations by performing extra-precise iterative refinement
   39: *  and provides error bounds and backward error estimates for the solution.
   40: *  This subroutine is called by DPORFSX to perform iterative refinement.
   41: *  In addition to normwise error bound, the code provides maximum
   42: *  componentwise error bound if possible. See comments for ERR_BNDS_NORM
   43: *  and ERR_BNDS_COMP for details of the error bounds. Note that this
   44: *  subroutine is only resonsible for setting the second fields of
   45: *  ERR_BNDS_NORM and ERR_BNDS_COMP.
   46: *
   47: *  Arguments
   48: *  =========
   49: *
   50: *     PREC_TYPE      (input) INTEGER
   51: *     Specifies the intermediate precision to be used in refinement.
   52: *     The value is defined by ILAPREC(P) where P is a CHARACTER and
   53: *     P    = 'S':  Single
   54: *          = 'D':  Double
   55: *          = 'I':  Indigenous
   56: *          = 'X', 'E':  Extra
   57: *
   58: *     UPLO    (input) CHARACTER*1
   59: *       = 'U':  Upper triangle of A is stored;
   60: *       = 'L':  Lower triangle of A is stored.
   61: *
   62: *     N              (input) INTEGER
   63: *     The number of linear equations, i.e., the order of the
   64: *     matrix A.  N >= 0.
   65: *
   66: *     NRHS           (input) INTEGER
   67: *     The number of right-hand-sides, i.e., the number of columns of the
   68: *     matrix B.
   69: *
   70: *     A              (input) DOUBLE PRECISION array, dimension (LDA,N)
   71: *     On entry, the N-by-N matrix A.
   72: *
   73: *     LDA            (input) INTEGER
   74: *     The leading dimension of the array A.  LDA >= max(1,N).
   75: *
   76: *     AF             (input) DOUBLE PRECISION array, dimension (LDAF,N)
   77: *     The triangular factor U or L from the Cholesky factorization
   78: *     A = U**T*U or A = L*L**T, as computed by DPOTRF.
   79: *
   80: *     LDAF           (input) INTEGER
   81: *     The leading dimension of the array AF.  LDAF >= max(1,N).
   82: *
   83: *     COLEQU         (input) LOGICAL
   84: *     If .TRUE. then column equilibration was done to A before calling
   85: *     this routine. This is needed to compute the solution and error
   86: *     bounds correctly.
   87: *
   88: *     C              (input) DOUBLE PRECISION array, dimension (N)
   89: *     The column scale factors for A. If COLEQU = .FALSE., C
   90: *     is not accessed. If C is input, each element of C should be a power
   91: *     of the radix to ensure a reliable solution and error estimates.
   92: *     Scaling by powers of the radix does not cause rounding errors unless
   93: *     the result underflows or overflows. Rounding errors during scaling
   94: *     lead to refining with a matrix that is not equivalent to the
   95: *     input matrix, producing error estimates that may not be
   96: *     reliable.
   97: *
   98: *     B              (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
   99: *     The right-hand-side matrix B.
  100: *
  101: *     LDB            (input) INTEGER
  102: *     The leading dimension of the array B.  LDB >= max(1,N).
  103: *
  104: *     Y              (input/output) DOUBLE PRECISION array, dimension
  105: *                    (LDY,NRHS)
  106: *     On entry, the solution matrix X, as computed by DPOTRS.
  107: *     On exit, the improved solution matrix Y.
  108: *
  109: *     LDY            (input) INTEGER
  110: *     The leading dimension of the array Y.  LDY >= max(1,N).
  111: *
  112: *     BERR_OUT       (output) DOUBLE PRECISION array, dimension (NRHS)
  113: *     On exit, BERR_OUT(j) contains the componentwise relative backward
  114: *     error for right-hand-side j from the formula
  115: *         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  116: *     where abs(Z) is the componentwise absolute value of the matrix
  117: *     or vector Z. This is computed by DLA_LIN_BERR.
  118: *
  119: *     N_NORMS        (input) INTEGER
  120: *     Determines which error bounds to return (see ERR_BNDS_NORM
  121: *     and ERR_BNDS_COMP).
  122: *     If N_NORMS >= 1 return normwise error bounds.
  123: *     If N_NORMS >= 2 return componentwise error bounds.
  124: *
  125: *     ERR_BNDS_NORM  (input/output) DOUBLE PRECISION array, dimension
  126: *                    (NRHS, N_ERR_BNDS)
  127: *     For each right-hand side, this array contains information about
  128: *     various error bounds and condition numbers corresponding to the
  129: *     normwise relative error, which is defined as follows:
  130: *
  131: *     Normwise relative error in the ith solution vector:
  132: *             max_j (abs(XTRUE(j,i) - X(j,i)))
  133: *            ------------------------------
  134: *                  max_j abs(X(j,i))
  135: *
  136: *     The array is indexed by the type of error information as described
  137: *     below. There currently are up to three pieces of information
  138: *     returned.
  139: *
  140: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  141: *     right-hand side.
  142: *
  143: *     The second index in ERR_BNDS_NORM(:,err) contains the following
  144: *     three fields:
  145: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  146: *              reciprocal condition number is less than the threshold
  147: *              sqrt(n) * slamch('Epsilon').
  148: *
  149: *     err = 2 "Guaranteed" error bound: The estimated forward error,
  150: *              almost certainly within a factor of 10 of the true error
  151: *              so long as the next entry is greater than the threshold
  152: *              sqrt(n) * slamch('Epsilon'). This error bound should only
  153: *              be trusted if the previous boolean is true.
  154: *
  155: *     err = 3  Reciprocal condition number: Estimated normwise
  156: *              reciprocal condition number.  Compared with the threshold
  157: *              sqrt(n) * slamch('Epsilon') to determine if the error
  158: *              estimate is "guaranteed". These reciprocal condition
  159: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  160: *              appropriately scaled matrix Z.
  161: *              Let Z = S*A, where S scales each row by a power of the
  162: *              radix so all absolute row sums of Z are approximately 1.
  163: *
  164: *     This subroutine is only responsible for setting the second field
  165: *     above.
  166: *     See Lapack Working Note 165 for further details and extra
  167: *     cautions.
  168: *
  169: *     ERR_BNDS_COMP  (input/output) DOUBLE PRECISION array, dimension
  170: *                    (NRHS, N_ERR_BNDS)
  171: *     For each right-hand side, this array contains information about
  172: *     various error bounds and condition numbers corresponding to the
  173: *     componentwise relative error, which is defined as follows:
  174: *
  175: *     Componentwise relative error in the ith solution vector:
  176: *                    abs(XTRUE(j,i) - X(j,i))
  177: *             max_j ----------------------
  178: *                         abs(X(j,i))
  179: *
  180: *     The array is indexed by the right-hand side i (on which the
  181: *     componentwise relative error depends), and the type of error
  182: *     information as described below. There currently are up to three
  183: *     pieces of information returned for each right-hand side. If
  184: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  185: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  186: *     the first (:,N_ERR_BNDS) entries are returned.
  187: *
  188: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  189: *     right-hand side.
  190: *
  191: *     The second index in ERR_BNDS_COMP(:,err) contains the following
  192: *     three fields:
  193: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  194: *              reciprocal condition number is less than the threshold
  195: *              sqrt(n) * slamch('Epsilon').
  196: *
  197: *     err = 2 "Guaranteed" error bound: The estimated forward error,
  198: *              almost certainly within a factor of 10 of the true error
  199: *              so long as the next entry is greater than the threshold
  200: *              sqrt(n) * slamch('Epsilon'). This error bound should only
  201: *              be trusted if the previous boolean is true.
  202: *
  203: *     err = 3  Reciprocal condition number: Estimated componentwise
  204: *              reciprocal condition number.  Compared with the threshold
  205: *              sqrt(n) * slamch('Epsilon') to determine if the error
  206: *              estimate is "guaranteed". These reciprocal condition
  207: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  208: *              appropriately scaled matrix Z.
  209: *              Let Z = S*(A*diag(x)), where x is the solution for the
  210: *              current right-hand side and S scales each row of
  211: *              A*diag(x) by a power of the radix so all absolute row
  212: *              sums of Z are approximately 1.
  213: *
  214: *     This subroutine is only responsible for setting the second field
  215: *     above.
  216: *     See Lapack Working Note 165 for further details and extra
  217: *     cautions.
  218: *
  219: *     RES            (input) DOUBLE PRECISION array, dimension (N)
  220: *     Workspace to hold the intermediate residual.
  221: *
  222: *     AYB            (input) DOUBLE PRECISION array, dimension (N)
  223: *     Workspace. This can be the same workspace passed for Y_TAIL.
  224: *
  225: *     DY             (input) DOUBLE PRECISION array, dimension (N)
  226: *     Workspace to hold the intermediate solution.
  227: *
  228: *     Y_TAIL         (input) DOUBLE PRECISION array, dimension (N)
  229: *     Workspace to hold the trailing bits of the intermediate solution.
  230: *
  231: *     RCOND          (input) DOUBLE PRECISION
  232: *     Reciprocal scaled condition number.  This is an estimate of the
  233: *     reciprocal Skeel condition number of the matrix A after
  234: *     equilibration (if done).  If this is less than the machine
  235: *     precision (in particular, if it is zero), the matrix is singular
  236: *     to working precision.  Note that the error may still be small even
  237: *     if this number is very small and the matrix appears ill-
  238: *     conditioned.
  239: *
  240: *     ITHRESH        (input) INTEGER
  241: *     The maximum number of residual computations allowed for
  242: *     refinement. The default is 10. For 'aggressive' set to 100 to
  243: *     permit convergence using approximate factorizations or
  244: *     factorizations other than LU. If the factorization uses a
  245: *     technique other than Gaussian elimination, the guarantees in
  246: *     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
  247: *
  248: *     RTHRESH        (input) DOUBLE PRECISION
  249: *     Determines when to stop refinement if the error estimate stops
  250: *     decreasing. Refinement will stop when the next solution no longer
  251: *     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  252: *     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  253: *     default value is 0.5. For 'aggressive' set to 0.9 to permit
  254: *     convergence on extremely ill-conditioned matrices. See LAWN 165
  255: *     for more details.
  256: *
  257: *     DZ_UB          (input) DOUBLE PRECISION
  258: *     Determines when to start considering componentwise convergence.
  259: *     Componentwise convergence is only considered after each component
  260: *     of the solution Y is stable, which we definte as the relative
  261: *     change in each component being less than DZ_UB. The default value
  262: *     is 0.25, requiring the first bit to be stable. See LAWN 165 for
  263: *     more details.
  264: *
  265: *     IGNORE_CWISE   (input) LOGICAL
  266: *     If .TRUE. then ignore componentwise convergence. Default value
  267: *     is .FALSE..
  268: *
  269: *     INFO           (output) INTEGER
  270: *       = 0:  Successful exit.
  271: *       < 0:  if INFO = -i, the ith argument to DPOTRS had an illegal
  272: *             value
  273: *
  274: *  =====================================================================
  275: *
  276: *     .. Local Scalars ..
  277:       INTEGER            UPLO2, CNT, I, J, X_STATE, Z_STATE
  278:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  279:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  280:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  281:      $                   EPS, HUGEVAL, INCR_THRESH
  282:       LOGICAL            INCR_PREC
  283: *     ..
  284: *     .. Parameters ..
  285:       INTEGER           UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  286:      $                  NOPROG_STATE, Y_PREC_STATE, BASE_RESIDUAL,
  287:      $                  EXTRA_RESIDUAL, EXTRA_Y
  288:       PARAMETER         ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  289:      $                  CONV_STATE = 2, NOPROG_STATE = 3 )
  290:       PARAMETER         ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  291:      $                  EXTRA_Y = 2 )
  292:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  293:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  294:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  295:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  296:      $                   BERR_I = 3 )
  297:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  298:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  299:      $                   PIV_GROWTH_I = 9 )
  300:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  301:      $                   LA_LINRX_CWISE_I
  302:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  303:      $                   LA_LINRX_ITHRESH_I = 2 )
  304:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  305:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  306:      $                   LA_LINRX_RCOND_I
  307:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  308:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  309: *     ..
  310: *     .. External Functions ..
  311:       LOGICAL            LSAME
  312:       EXTERNAL           ILAUPLO
  313:       INTEGER            ILAUPLO
  314: *     ..
  315: *     .. External Subroutines ..
  316:       EXTERNAL          DAXPY, DCOPY, DPOTRS, DSYMV, BLAS_DSYMV_X,
  317:      $                  BLAS_DSYMV2_X, DLA_SYAMV, DLA_WWADDW,
  318:      $                  DLA_LIN_BERR
  319:       DOUBLE PRECISION   DLAMCH
  320: *     ..
  321: *     .. Intrinsic Functions ..
  322:       INTRINSIC         ABS, MAX, MIN
  323: *     ..
  324: *     .. Executable Statements ..
  325: *
  326:       IF (INFO.NE.0) RETURN
  327:       EPS = DLAMCH( 'Epsilon' )
  328:       HUGEVAL = DLAMCH( 'Overflow' )
  329: *     Force HUGEVAL to Inf
  330:       HUGEVAL = HUGEVAL * HUGEVAL
  331: *     Using HUGEVAL may lead to spurious underflows.
  332:       INCR_THRESH = DBLE( N ) * EPS
  333: 
  334:       IF ( LSAME ( UPLO, 'L' ) ) THEN
  335:          UPLO2 = ILAUPLO( 'L' )
  336:       ELSE
  337:          UPLO2 = ILAUPLO( 'U' )
  338:       ENDIF
  339: 
  340:       DO J = 1, NRHS
  341:          Y_PREC_STATE = EXTRA_RESIDUAL
  342:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  343:             DO I = 1, N
  344:                Y_TAIL( I ) = 0.0D+0
  345:             END DO
  346:          END IF
  347: 
  348:          DXRAT = 0.0D+0
  349:          DXRATMAX = 0.0D+0
  350:          DZRAT = 0.0D+0
  351:          DZRATMAX = 0.0D+0
  352:          FINAL_DX_X = HUGEVAL
  353:          FINAL_DZ_Z = HUGEVAL
  354:          PREVNORMDX = HUGEVAL
  355:          PREV_DZ_Z = HUGEVAL
  356:          DZ_Z = HUGEVAL
  357:          DX_X = HUGEVAL
  358: 
  359:          X_STATE = WORKING_STATE
  360:          Z_STATE = UNSTABLE_STATE
  361:          INCR_PREC = .FALSE.
  362: 
  363:          DO CNT = 1, ITHRESH
  364: *
  365: *         Compute residual RES = B_s - op(A_s) * Y,
  366: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
  367: *
  368:             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  369:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
  370:                CALL DSYMV( UPLO, N, -1.0D+0, A, LDA, Y(1,J), 1,
  371:      $              1.0D+0, RES, 1 )
  372:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
  373:                CALL BLAS_DSYMV_X( UPLO2, N, -1.0D+0, A, LDA,
  374:      $              Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
  375:             ELSE
  376:                CALL BLAS_DSYMV2_X(UPLO2, N, -1.0D+0, A, LDA,
  377:      $              Y(1, J), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE)
  378:             END IF
  379: 
  380: !         XXX: RES is no longer needed.
  381:             CALL DCOPY( N, RES, 1, DY, 1 )
  382:             CALL DPOTRS( UPLO, N, 1, AF, LDAF, DY, N, INFO )
  383: *
  384: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  385: *
  386:             NORMX = 0.0D+0
  387:             NORMY = 0.0D+0
  388:             NORMDX = 0.0D+0
  389:             DZ_Z = 0.0D+0
  390:             YMIN = HUGEVAL
  391: 
  392:             DO I = 1, N
  393:                YK = ABS( Y( I, J ) )
  394:                DYK = ABS( DY( I ) )
  395: 
  396:                IF ( YK .NE. 0.0D+0 ) THEN
  397:                   DZ_Z = MAX( DZ_Z, DYK / YK )
  398:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  399:                   DZ_Z = HUGEVAL
  400:                END IF
  401: 
  402:                YMIN = MIN( YMIN, YK )
  403: 
  404:                NORMY = MAX( NORMY, YK )
  405: 
  406:                IF ( COLEQU ) THEN
  407:                   NORMX = MAX( NORMX, YK * C( I ) )
  408:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
  409:                ELSE
  410:                   NORMX = NORMY
  411:                   NORMDX = MAX( NORMDX, DYK )
  412:                END IF
  413:             END DO
  414: 
  415:             IF ( NORMX .NE. 0.0D+0 ) THEN
  416:                DX_X = NORMDX / NORMX
  417:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  418:                DX_X = 0.0D+0
  419:             ELSE
  420:                DX_X = HUGEVAL
  421:             END IF
  422: 
  423:             DXRAT = NORMDX / PREVNORMDX
  424:             DZRAT = DZ_Z / PREV_DZ_Z
  425: *
  426: *         Check termination criteria.
  427: *
  428:             IF ( YMIN*RCOND .LT. INCR_THRESH*NORMY
  429:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
  430:      $           INCR_PREC = .TRUE.
  431: 
  432:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  433:      $           X_STATE = WORKING_STATE
  434:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
  435:                IF ( DX_X .LE. EPS ) THEN
  436:                   X_STATE = CONV_STATE
  437:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  438:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  439:                      INCR_PREC = .TRUE.
  440:                   ELSE
  441:                      X_STATE = NOPROG_STATE
  442:                   END IF
  443:                ELSE
  444:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  445:                END IF
  446:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  447:             END IF
  448: 
  449:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  450:      $           Z_STATE = WORKING_STATE
  451:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  452:      $           Z_STATE = WORKING_STATE
  453:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  454:                IF ( DZ_Z .LE. EPS ) THEN
  455:                   Z_STATE = CONV_STATE
  456:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  457:                   Z_STATE = UNSTABLE_STATE
  458:                   DZRATMAX = 0.0D+0
  459:                   FINAL_DZ_Z = HUGEVAL
  460:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  461:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  462:                      INCR_PREC = .TRUE.
  463:                   ELSE
  464:                      Z_STATE = NOPROG_STATE
  465:                   END IF
  466:                ELSE
  467:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  468:                END IF
  469:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  470:             END IF
  471: 
  472:             IF ( X_STATE.NE.WORKING_STATE.AND.
  473:      $           ( IGNORE_CWISE.OR.Z_STATE.NE.WORKING_STATE ) )
  474:      $           GOTO 666
  475: 
  476:             IF ( INCR_PREC ) THEN
  477:                INCR_PREC = .FALSE.
  478:                Y_PREC_STATE = Y_PREC_STATE + 1
  479:                DO I = 1, N
  480:                   Y_TAIL( I ) = 0.0D+0
  481:                END DO
  482:             END IF
  483: 
  484:             PREVNORMDX = NORMDX
  485:             PREV_DZ_Z = DZ_Z
  486: *
  487: *           Update soluton.
  488: *
  489:             IF (Y_PREC_STATE .LT. EXTRA_Y) THEN
  490:                CALL DAXPY( N, 1.0D+0, DY, 1, Y(1,J), 1 )
  491:             ELSE
  492:                CALL DLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
  493:             END IF
  494: 
  495:          END DO
  496: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
  497:  666     CONTINUE
  498: *
  499: *     Set final_* when cnt hits ithresh.
  500: *
  501:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  502:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  503: *
  504: *     Compute error bounds.
  505: *
  506:          IF ( N_NORMS .GE. 1 ) THEN
  507:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
  508:      $           FINAL_DX_X / (1 - DXRATMAX)
  509:          END IF
  510:          IF ( N_NORMS .GE. 2 ) THEN
  511:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
  512:      $           FINAL_DZ_Z / (1 - DZRATMAX)
  513:          END IF
  514: *
  515: *     Compute componentwise relative backward error from formula
  516: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  517: *     where abs(Z) is the componentwise absolute value of the matrix
  518: *     or vector Z.
  519: *
  520: *        Compute residual RES = B_s - op(A_s) * Y,
  521: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  522: *
  523:          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  524:          CALL DSYMV( UPLO, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0, RES,
  525:      $     1 )
  526: 
  527:          DO I = 1, N
  528:             AYB( I ) = ABS( B( I, J ) )
  529:          END DO
  530: *
  531: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
  532: *
  533:          CALL DLA_SYAMV( UPLO2, N, 1.0D+0,
  534:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
  535: 
  536:          CALL DLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
  537: *
  538: *     End of loop for each RHS.
  539: *
  540:       END DO
  541: *
  542:       RETURN
  543:       END

CVSweb interface <joel.bertrand@systella.fr>