File:  [local] / rpl / lapack / lapack / dla_porfsx_extended.f
Revision 1.15: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:17:55 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DLA_PORFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric or Hermitian positive-definite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLA_PORFSX_EXTENDED + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_porfsx_extended.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_porfsx_extended.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_porfsx_extended.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLA_PORFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
   22: *                                       AF, LDAF, COLEQU, C, B, LDB, Y,
   23: *                                       LDY, BERR_OUT, N_NORMS,
   24: *                                       ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
   25: *                                       AYB, DY, Y_TAIL, RCOND, ITHRESH,
   26: *                                       RTHRESH, DZ_UB, IGNORE_CWISE,
   27: *                                       INFO )
   28: *
   29: *       .. Scalar Arguments ..
   30: *       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
   31: *      $                   N_NORMS, ITHRESH
   32: *       CHARACTER          UPLO
   33: *       LOGICAL            COLEQU, IGNORE_CWISE
   34: *       DOUBLE PRECISION   RTHRESH, DZ_UB
   35: *       ..
   36: *       .. Array Arguments ..
   37: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   38: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
   39: *       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
   40: *      $                   ERR_BNDS_NORM( NRHS, * ),
   41: *      $                   ERR_BNDS_COMP( NRHS, * )
   42: *       ..
   43: *
   44: *
   45: *> \par Purpose:
   46: *  =============
   47: *>
   48: *> \verbatim
   49: *>
   50: *> DLA_PORFSX_EXTENDED improves the computed solution to a system of
   51: *> linear equations by performing extra-precise iterative refinement
   52: *> and provides error bounds and backward error estimates for the solution.
   53: *> This subroutine is called by DPORFSX to perform iterative refinement.
   54: *> In addition to normwise error bound, the code provides maximum
   55: *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
   56: *> and ERR_BNDS_COMP for details of the error bounds. Note that this
   57: *> subroutine is only resonsible for setting the second fields of
   58: *> ERR_BNDS_NORM and ERR_BNDS_COMP.
   59: *> \endverbatim
   60: *
   61: *  Arguments:
   62: *  ==========
   63: *
   64: *> \param[in] PREC_TYPE
   65: *> \verbatim
   66: *>          PREC_TYPE is INTEGER
   67: *>     Specifies the intermediate precision to be used in refinement.
   68: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
   69: *>     P    = 'S':  Single
   70: *>          = 'D':  Double
   71: *>          = 'I':  Indigenous
   72: *>          = 'X', 'E':  Extra
   73: *> \endverbatim
   74: *>
   75: *> \param[in] UPLO
   76: *> \verbatim
   77: *>          UPLO is CHARACTER*1
   78: *>       = 'U':  Upper triangle of A is stored;
   79: *>       = 'L':  Lower triangle of A is stored.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] N
   83: *> \verbatim
   84: *>          N is INTEGER
   85: *>     The number of linear equations, i.e., the order of the
   86: *>     matrix A.  N >= 0.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] NRHS
   90: *> \verbatim
   91: *>          NRHS is INTEGER
   92: *>     The number of right-hand-sides, i.e., the number of columns of the
   93: *>     matrix B.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] A
   97: *> \verbatim
   98: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   99: *>     On entry, the N-by-N matrix A.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDA
  103: *> \verbatim
  104: *>          LDA is INTEGER
  105: *>     The leading dimension of the array A.  LDA >= max(1,N).
  106: *> \endverbatim
  107: *>
  108: *> \param[in] AF
  109: *> \verbatim
  110: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
  111: *>     The triangular factor U or L from the Cholesky factorization
  112: *>     A = U**T*U or A = L*L**T, as computed by DPOTRF.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDAF
  116: *> \verbatim
  117: *>          LDAF is INTEGER
  118: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  119: *> \endverbatim
  120: *>
  121: *> \param[in] COLEQU
  122: *> \verbatim
  123: *>          COLEQU is LOGICAL
  124: *>     If .TRUE. then column equilibration was done to A before calling
  125: *>     this routine. This is needed to compute the solution and error
  126: *>     bounds correctly.
  127: *> \endverbatim
  128: *>
  129: *> \param[in] C
  130: *> \verbatim
  131: *>          C is DOUBLE PRECISION array, dimension (N)
  132: *>     The column scale factors for A. If COLEQU = .FALSE., C
  133: *>     is not accessed. If C is input, each element of C should be a power
  134: *>     of the radix to ensure a reliable solution and error estimates.
  135: *>     Scaling by powers of the radix does not cause rounding errors unless
  136: *>     the result underflows or overflows. Rounding errors during scaling
  137: *>     lead to refining with a matrix that is not equivalent to the
  138: *>     input matrix, producing error estimates that may not be
  139: *>     reliable.
  140: *> \endverbatim
  141: *>
  142: *> \param[in] B
  143: *> \verbatim
  144: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  145: *>     The right-hand-side matrix B.
  146: *> \endverbatim
  147: *>
  148: *> \param[in] LDB
  149: *> \verbatim
  150: *>          LDB is INTEGER
  151: *>     The leading dimension of the array B.  LDB >= max(1,N).
  152: *> \endverbatim
  153: *>
  154: *> \param[in,out] Y
  155: *> \verbatim
  156: *>          Y is DOUBLE PRECISION array, dimension (LDY,NRHS)
  157: *>     On entry, the solution matrix X, as computed by DPOTRS.
  158: *>     On exit, the improved solution matrix Y.
  159: *> \endverbatim
  160: *>
  161: *> \param[in] LDY
  162: *> \verbatim
  163: *>          LDY is INTEGER
  164: *>     The leading dimension of the array Y.  LDY >= max(1,N).
  165: *> \endverbatim
  166: *>
  167: *> \param[out] BERR_OUT
  168: *> \verbatim
  169: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
  170: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
  171: *>     error for right-hand-side j from the formula
  172: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  173: *>     where abs(Z) is the componentwise absolute value of the matrix
  174: *>     or vector Z. This is computed by DLA_LIN_BERR.
  175: *> \endverbatim
  176: *>
  177: *> \param[in] N_NORMS
  178: *> \verbatim
  179: *>          N_NORMS is INTEGER
  180: *>     Determines which error bounds to return (see ERR_BNDS_NORM
  181: *>     and ERR_BNDS_COMP).
  182: *>     If N_NORMS >= 1 return normwise error bounds.
  183: *>     If N_NORMS >= 2 return componentwise error bounds.
  184: *> \endverbatim
  185: *>
  186: *> \param[in,out] ERR_BNDS_NORM
  187: *> \verbatim
  188: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  189: *>     For each right-hand side, this array contains information about
  190: *>     various error bounds and condition numbers corresponding to the
  191: *>     normwise relative error, which is defined as follows:
  192: *>
  193: *>     Normwise relative error in the ith solution vector:
  194: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  195: *>            ------------------------------
  196: *>                  max_j abs(X(j,i))
  197: *>
  198: *>     The array is indexed by the type of error information as described
  199: *>     below. There currently are up to three pieces of information
  200: *>     returned.
  201: *>
  202: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  203: *>     right-hand side.
  204: *>
  205: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  206: *>     three fields:
  207: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  208: *>              reciprocal condition number is less than the threshold
  209: *>              sqrt(n) * slamch('Epsilon').
  210: *>
  211: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  212: *>              almost certainly within a factor of 10 of the true error
  213: *>              so long as the next entry is greater than the threshold
  214: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  215: *>              be trusted if the previous boolean is true.
  216: *>
  217: *>     err = 3  Reciprocal condition number: Estimated normwise
  218: *>              reciprocal condition number.  Compared with the threshold
  219: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  220: *>              estimate is "guaranteed". These reciprocal condition
  221: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  222: *>              appropriately scaled matrix Z.
  223: *>              Let Z = S*A, where S scales each row by a power of the
  224: *>              radix so all absolute row sums of Z are approximately 1.
  225: *>
  226: *>     This subroutine is only responsible for setting the second field
  227: *>     above.
  228: *>     See Lapack Working Note 165 for further details and extra
  229: *>     cautions.
  230: *> \endverbatim
  231: *>
  232: *> \param[in,out] ERR_BNDS_COMP
  233: *> \verbatim
  234: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  235: *>     For each right-hand side, this array contains information about
  236: *>     various error bounds and condition numbers corresponding to the
  237: *>     componentwise relative error, which is defined as follows:
  238: *>
  239: *>     Componentwise relative error in the ith solution vector:
  240: *>                    abs(XTRUE(j,i) - X(j,i))
  241: *>             max_j ----------------------
  242: *>                         abs(X(j,i))
  243: *>
  244: *>     The array is indexed by the right-hand side i (on which the
  245: *>     componentwise relative error depends), and the type of error
  246: *>     information as described below. There currently are up to three
  247: *>     pieces of information returned for each right-hand side. If
  248: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  249: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  250: *>     the first (:,N_ERR_BNDS) entries are returned.
  251: *>
  252: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  253: *>     right-hand side.
  254: *>
  255: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  256: *>     three fields:
  257: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  258: *>              reciprocal condition number is less than the threshold
  259: *>              sqrt(n) * slamch('Epsilon').
  260: *>
  261: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  262: *>              almost certainly within a factor of 10 of the true error
  263: *>              so long as the next entry is greater than the threshold
  264: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  265: *>              be trusted if the previous boolean is true.
  266: *>
  267: *>     err = 3  Reciprocal condition number: Estimated componentwise
  268: *>              reciprocal condition number.  Compared with the threshold
  269: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  270: *>              estimate is "guaranteed". These reciprocal condition
  271: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  272: *>              appropriately scaled matrix Z.
  273: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  274: *>              current right-hand side and S scales each row of
  275: *>              A*diag(x) by a power of the radix so all absolute row
  276: *>              sums of Z are approximately 1.
  277: *>
  278: *>     This subroutine is only responsible for setting the second field
  279: *>     above.
  280: *>     See Lapack Working Note 165 for further details and extra
  281: *>     cautions.
  282: *> \endverbatim
  283: *>
  284: *> \param[in] RES
  285: *> \verbatim
  286: *>          RES is DOUBLE PRECISION array, dimension (N)
  287: *>     Workspace to hold the intermediate residual.
  288: *> \endverbatim
  289: *>
  290: *> \param[in] AYB
  291: *> \verbatim
  292: *>          AYB is DOUBLE PRECISION array, dimension (N)
  293: *>     Workspace. This can be the same workspace passed for Y_TAIL.
  294: *> \endverbatim
  295: *>
  296: *> \param[in] DY
  297: *> \verbatim
  298: *>          DY is DOUBLE PRECISION array, dimension (N)
  299: *>     Workspace to hold the intermediate solution.
  300: *> \endverbatim
  301: *>
  302: *> \param[in] Y_TAIL
  303: *> \verbatim
  304: *>          Y_TAIL is DOUBLE PRECISION array, dimension (N)
  305: *>     Workspace to hold the trailing bits of the intermediate solution.
  306: *> \endverbatim
  307: *>
  308: *> \param[in] RCOND
  309: *> \verbatim
  310: *>          RCOND is DOUBLE PRECISION
  311: *>     Reciprocal scaled condition number.  This is an estimate of the
  312: *>     reciprocal Skeel condition number of the matrix A after
  313: *>     equilibration (if done).  If this is less than the machine
  314: *>     precision (in particular, if it is zero), the matrix is singular
  315: *>     to working precision.  Note that the error may still be small even
  316: *>     if this number is very small and the matrix appears ill-
  317: *>     conditioned.
  318: *> \endverbatim
  319: *>
  320: *> \param[in] ITHRESH
  321: *> \verbatim
  322: *>          ITHRESH is INTEGER
  323: *>     The maximum number of residual computations allowed for
  324: *>     refinement. The default is 10. For 'aggressive' set to 100 to
  325: *>     permit convergence using approximate factorizations or
  326: *>     factorizations other than LU. If the factorization uses a
  327: *>     technique other than Gaussian elimination, the guarantees in
  328: *>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
  329: *> \endverbatim
  330: *>
  331: *> \param[in] RTHRESH
  332: *> \verbatim
  333: *>          RTHRESH is DOUBLE PRECISION
  334: *>     Determines when to stop refinement if the error estimate stops
  335: *>     decreasing. Refinement will stop when the next solution no longer
  336: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  337: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  338: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
  339: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
  340: *>     for more details.
  341: *> \endverbatim
  342: *>
  343: *> \param[in] DZ_UB
  344: *> \verbatim
  345: *>          DZ_UB is DOUBLE PRECISION
  346: *>     Determines when to start considering componentwise convergence.
  347: *>     Componentwise convergence is only considered after each component
  348: *>     of the solution Y is stable, which we definte as the relative
  349: *>     change in each component being less than DZ_UB. The default value
  350: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
  351: *>     more details.
  352: *> \endverbatim
  353: *>
  354: *> \param[in] IGNORE_CWISE
  355: *> \verbatim
  356: *>          IGNORE_CWISE is LOGICAL
  357: *>     If .TRUE. then ignore componentwise convergence. Default value
  358: *>     is .FALSE..
  359: *> \endverbatim
  360: *>
  361: *> \param[out] INFO
  362: *> \verbatim
  363: *>          INFO is INTEGER
  364: *>       = 0:  Successful exit.
  365: *>       < 0:  if INFO = -i, the ith argument to DPOTRS had an illegal
  366: *>             value
  367: *> \endverbatim
  368: *
  369: *  Authors:
  370: *  ========
  371: *
  372: *> \author Univ. of Tennessee
  373: *> \author Univ. of California Berkeley
  374: *> \author Univ. of Colorado Denver
  375: *> \author NAG Ltd.
  376: *
  377: *> \date June 2017
  378: *
  379: *> \ingroup doublePOcomputational
  380: *
  381: *  =====================================================================
  382:       SUBROUTINE DLA_PORFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
  383:      $                                AF, LDAF, COLEQU, C, B, LDB, Y,
  384:      $                                LDY, BERR_OUT, N_NORMS,
  385:      $                                ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
  386:      $                                AYB, DY, Y_TAIL, RCOND, ITHRESH,
  387:      $                                RTHRESH, DZ_UB, IGNORE_CWISE,
  388:      $                                INFO )
  389: *
  390: *  -- LAPACK computational routine (version 3.7.1) --
  391: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  392: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  393: *     June 2017
  394: *
  395: *     .. Scalar Arguments ..
  396:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  397:      $                   N_NORMS, ITHRESH
  398:       CHARACTER          UPLO
  399:       LOGICAL            COLEQU, IGNORE_CWISE
  400:       DOUBLE PRECISION   RTHRESH, DZ_UB
  401: *     ..
  402: *     .. Array Arguments ..
  403:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  404:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  405:       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
  406:      $                   ERR_BNDS_NORM( NRHS, * ),
  407:      $                   ERR_BNDS_COMP( NRHS, * )
  408: *     ..
  409: *
  410: *  =====================================================================
  411: *
  412: *     .. Local Scalars ..
  413:       INTEGER            UPLO2, CNT, I, J, X_STATE, Z_STATE
  414:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  415:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  416:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  417:      $                   EPS, HUGEVAL, INCR_THRESH
  418:       LOGICAL            INCR_PREC
  419: *     ..
  420: *     .. Parameters ..
  421:       INTEGER           UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  422:      $                  NOPROG_STATE, Y_PREC_STATE, BASE_RESIDUAL,
  423:      $                  EXTRA_RESIDUAL, EXTRA_Y
  424:       PARAMETER         ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  425:      $                  CONV_STATE = 2, NOPROG_STATE = 3 )
  426:       PARAMETER         ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  427:      $                  EXTRA_Y = 2 )
  428:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  429:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  430:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  431:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  432:      $                   BERR_I = 3 )
  433:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  434:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  435:      $                   PIV_GROWTH_I = 9 )
  436:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  437:      $                   LA_LINRX_CWISE_I
  438:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  439:      $                   LA_LINRX_ITHRESH_I = 2 )
  440:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  441:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  442:      $                   LA_LINRX_RCOND_I
  443:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  444:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  445: *     ..
  446: *     .. External Functions ..
  447:       LOGICAL            LSAME
  448:       EXTERNAL           ILAUPLO
  449:       INTEGER            ILAUPLO
  450: *     ..
  451: *     .. External Subroutines ..
  452:       EXTERNAL          DAXPY, DCOPY, DPOTRS, DSYMV, BLAS_DSYMV_X,
  453:      $                  BLAS_DSYMV2_X, DLA_SYAMV, DLA_WWADDW,
  454:      $                  DLA_LIN_BERR
  455:       DOUBLE PRECISION   DLAMCH
  456: *     ..
  457: *     .. Intrinsic Functions ..
  458:       INTRINSIC         ABS, MAX, MIN
  459: *     ..
  460: *     .. Executable Statements ..
  461: *
  462:       IF (INFO.NE.0) RETURN
  463:       EPS = DLAMCH( 'Epsilon' )
  464:       HUGEVAL = DLAMCH( 'Overflow' )
  465: *     Force HUGEVAL to Inf
  466:       HUGEVAL = HUGEVAL * HUGEVAL
  467: *     Using HUGEVAL may lead to spurious underflows.
  468:       INCR_THRESH = DBLE( N ) * EPS
  469: 
  470:       IF ( LSAME ( UPLO, 'L' ) ) THEN
  471:          UPLO2 = ILAUPLO( 'L' )
  472:       ELSE
  473:          UPLO2 = ILAUPLO( 'U' )
  474:       ENDIF
  475: 
  476:       DO J = 1, NRHS
  477:          Y_PREC_STATE = EXTRA_RESIDUAL
  478:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  479:             DO I = 1, N
  480:                Y_TAIL( I ) = 0.0D+0
  481:             END DO
  482:          END IF
  483: 
  484:          DXRAT = 0.0D+0
  485:          DXRATMAX = 0.0D+0
  486:          DZRAT = 0.0D+0
  487:          DZRATMAX = 0.0D+0
  488:          FINAL_DX_X = HUGEVAL
  489:          FINAL_DZ_Z = HUGEVAL
  490:          PREVNORMDX = HUGEVAL
  491:          PREV_DZ_Z = HUGEVAL
  492:          DZ_Z = HUGEVAL
  493:          DX_X = HUGEVAL
  494: 
  495:          X_STATE = WORKING_STATE
  496:          Z_STATE = UNSTABLE_STATE
  497:          INCR_PREC = .FALSE.
  498: 
  499:          DO CNT = 1, ITHRESH
  500: *
  501: *         Compute residual RES = B_s - op(A_s) * Y,
  502: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
  503: *
  504:             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  505:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
  506:                CALL DSYMV( UPLO, N, -1.0D+0, A, LDA, Y(1,J), 1,
  507:      $              1.0D+0, RES, 1 )
  508:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
  509:                CALL BLAS_DSYMV_X( UPLO2, N, -1.0D+0, A, LDA,
  510:      $              Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
  511:             ELSE
  512:                CALL BLAS_DSYMV2_X(UPLO2, N, -1.0D+0, A, LDA,
  513:      $              Y(1, J), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE)
  514:             END IF
  515: 
  516: !         XXX: RES is no longer needed.
  517:             CALL DCOPY( N, RES, 1, DY, 1 )
  518:             CALL DPOTRS( UPLO, N, 1, AF, LDAF, DY, N, INFO )
  519: *
  520: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  521: *
  522:             NORMX = 0.0D+0
  523:             NORMY = 0.0D+0
  524:             NORMDX = 0.0D+0
  525:             DZ_Z = 0.0D+0
  526:             YMIN = HUGEVAL
  527: 
  528:             DO I = 1, N
  529:                YK = ABS( Y( I, J ) )
  530:                DYK = ABS( DY( I ) )
  531: 
  532:                IF ( YK .NE. 0.0D+0 ) THEN
  533:                   DZ_Z = MAX( DZ_Z, DYK / YK )
  534:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  535:                   DZ_Z = HUGEVAL
  536:                END IF
  537: 
  538:                YMIN = MIN( YMIN, YK )
  539: 
  540:                NORMY = MAX( NORMY, YK )
  541: 
  542:                IF ( COLEQU ) THEN
  543:                   NORMX = MAX( NORMX, YK * C( I ) )
  544:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
  545:                ELSE
  546:                   NORMX = NORMY
  547:                   NORMDX = MAX( NORMDX, DYK )
  548:                END IF
  549:             END DO
  550: 
  551:             IF ( NORMX .NE. 0.0D+0 ) THEN
  552:                DX_X = NORMDX / NORMX
  553:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  554:                DX_X = 0.0D+0
  555:             ELSE
  556:                DX_X = HUGEVAL
  557:             END IF
  558: 
  559:             DXRAT = NORMDX / PREVNORMDX
  560:             DZRAT = DZ_Z / PREV_DZ_Z
  561: *
  562: *         Check termination criteria.
  563: *
  564:             IF ( YMIN*RCOND .LT. INCR_THRESH*NORMY
  565:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
  566:      $           INCR_PREC = .TRUE.
  567: 
  568:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  569:      $           X_STATE = WORKING_STATE
  570:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
  571:                IF ( DX_X .LE. EPS ) THEN
  572:                   X_STATE = CONV_STATE
  573:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  574:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  575:                      INCR_PREC = .TRUE.
  576:                   ELSE
  577:                      X_STATE = NOPROG_STATE
  578:                   END IF
  579:                ELSE
  580:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  581:                END IF
  582:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  583:             END IF
  584: 
  585:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  586:      $           Z_STATE = WORKING_STATE
  587:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  588:      $           Z_STATE = WORKING_STATE
  589:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  590:                IF ( DZ_Z .LE. EPS ) THEN
  591:                   Z_STATE = CONV_STATE
  592:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  593:                   Z_STATE = UNSTABLE_STATE
  594:                   DZRATMAX = 0.0D+0
  595:                   FINAL_DZ_Z = HUGEVAL
  596:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  597:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  598:                      INCR_PREC = .TRUE.
  599:                   ELSE
  600:                      Z_STATE = NOPROG_STATE
  601:                   END IF
  602:                ELSE
  603:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  604:                END IF
  605:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  606:             END IF
  607: 
  608:             IF ( X_STATE.NE.WORKING_STATE.AND.
  609:      $           ( IGNORE_CWISE.OR.Z_STATE.NE.WORKING_STATE ) )
  610:      $           GOTO 666
  611: 
  612:             IF ( INCR_PREC ) THEN
  613:                INCR_PREC = .FALSE.
  614:                Y_PREC_STATE = Y_PREC_STATE + 1
  615:                DO I = 1, N
  616:                   Y_TAIL( I ) = 0.0D+0
  617:                END DO
  618:             END IF
  619: 
  620:             PREVNORMDX = NORMDX
  621:             PREV_DZ_Z = DZ_Z
  622: *
  623: *           Update soluton.
  624: *
  625:             IF (Y_PREC_STATE .LT. EXTRA_Y) THEN
  626:                CALL DAXPY( N, 1.0D+0, DY, 1, Y(1,J), 1 )
  627:             ELSE
  628:                CALL DLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
  629:             END IF
  630: 
  631:          END DO
  632: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
  633:  666     CONTINUE
  634: *
  635: *     Set final_* when cnt hits ithresh.
  636: *
  637:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  638:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  639: *
  640: *     Compute error bounds.
  641: *
  642:          IF ( N_NORMS .GE. 1 ) THEN
  643:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
  644:      $           FINAL_DX_X / (1 - DXRATMAX)
  645:          END IF
  646:          IF ( N_NORMS .GE. 2 ) THEN
  647:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
  648:      $           FINAL_DZ_Z / (1 - DZRATMAX)
  649:          END IF
  650: *
  651: *     Compute componentwise relative backward error from formula
  652: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  653: *     where abs(Z) is the componentwise absolute value of the matrix
  654: *     or vector Z.
  655: *
  656: *        Compute residual RES = B_s - op(A_s) * Y,
  657: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  658: *
  659:          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  660:          CALL DSYMV( UPLO, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0, RES,
  661:      $     1 )
  662: 
  663:          DO I = 1, N
  664:             AYB( I ) = ABS( B( I, J ) )
  665:          END DO
  666: *
  667: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
  668: *
  669:          CALL DLA_SYAMV( UPLO2, N, 1.0D+0,
  670:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
  671: 
  672:          CALL DLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
  673: *
  674: *     End of loop for each RHS.
  675: *
  676:       END DO
  677: *
  678:       RETURN
  679:       END

CVSweb interface <joel.bertrand@systella.fr>