Annotation of rpl/lapack/lapack/dla_porfsx_extended.f, revision 1.13

1.8       bertrand    1: *> \brief \b DLA_PORFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric or Hermitian positive-definite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
1.5       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.12      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.5       bertrand    7: *
                      8: *> \htmlonly
1.12      bertrand    9: *> Download DLA_PORFSX_EXTENDED + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_porfsx_extended.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_porfsx_extended.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_porfsx_extended.f">
1.5       bertrand   15: *> [TXT]</a>
1.12      bertrand   16: *> \endhtmlonly
1.5       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLA_PORFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
                     22: *                                       AF, LDAF, COLEQU, C, B, LDB, Y,
                     23: *                                       LDY, BERR_OUT, N_NORMS,
                     24: *                                       ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
                     25: *                                       AYB, DY, Y_TAIL, RCOND, ITHRESH,
                     26: *                                       RTHRESH, DZ_UB, IGNORE_CWISE,
                     27: *                                       INFO )
1.12      bertrand   28: *
1.5       bertrand   29: *       .. Scalar Arguments ..
                     30: *       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
                     31: *      $                   N_NORMS, ITHRESH
                     32: *       CHARACTER          UPLO
                     33: *       LOGICAL            COLEQU, IGNORE_CWISE
                     34: *       DOUBLE PRECISION   RTHRESH, DZ_UB
                     35: *       ..
                     36: *       .. Array Arguments ..
                     37: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     38: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
                     39: *       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
                     40: *      $                   ERR_BNDS_NORM( NRHS, * ),
                     41: *      $                   ERR_BNDS_COMP( NRHS, * )
                     42: *       ..
1.12      bertrand   43: *
1.5       bertrand   44: *
                     45: *> \par Purpose:
                     46: *  =============
                     47: *>
                     48: *> \verbatim
                     49: *>
                     50: *> DLA_PORFSX_EXTENDED improves the computed solution to a system of
                     51: *> linear equations by performing extra-precise iterative refinement
                     52: *> and provides error bounds and backward error estimates for the solution.
                     53: *> This subroutine is called by DPORFSX to perform iterative refinement.
                     54: *> In addition to normwise error bound, the code provides maximum
                     55: *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
                     56: *> and ERR_BNDS_COMP for details of the error bounds. Note that this
                     57: *> subroutine is only resonsible for setting the second fields of
                     58: *> ERR_BNDS_NORM and ERR_BNDS_COMP.
                     59: *> \endverbatim
                     60: *
                     61: *  Arguments:
                     62: *  ==========
                     63: *
                     64: *> \param[in] PREC_TYPE
                     65: *> \verbatim
                     66: *>          PREC_TYPE is INTEGER
                     67: *>     Specifies the intermediate precision to be used in refinement.
                     68: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
                     69: *>     P    = 'S':  Single
                     70: *>          = 'D':  Double
                     71: *>          = 'I':  Indigenous
                     72: *>          = 'X', 'E':  Extra
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] UPLO
                     76: *> \verbatim
                     77: *>          UPLO is CHARACTER*1
                     78: *>       = 'U':  Upper triangle of A is stored;
                     79: *>       = 'L':  Lower triangle of A is stored.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] N
                     83: *> \verbatim
                     84: *>          N is INTEGER
                     85: *>     The number of linear equations, i.e., the order of the
                     86: *>     matrix A.  N >= 0.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] NRHS
                     90: *> \verbatim
                     91: *>          NRHS is INTEGER
                     92: *>     The number of right-hand-sides, i.e., the number of columns of the
                     93: *>     matrix B.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] A
                     97: *> \verbatim
                     98: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     99: *>     On entry, the N-by-N matrix A.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] LDA
                    103: *> \verbatim
                    104: *>          LDA is INTEGER
                    105: *>     The leading dimension of the array A.  LDA >= max(1,N).
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[in] AF
                    109: *> \verbatim
                    110: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
                    111: *>     The triangular factor U or L from the Cholesky factorization
                    112: *>     A = U**T*U or A = L*L**T, as computed by DPOTRF.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in] LDAF
                    116: *> \verbatim
                    117: *>          LDAF is INTEGER
                    118: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] COLEQU
                    122: *> \verbatim
                    123: *>          COLEQU is LOGICAL
                    124: *>     If .TRUE. then column equilibration was done to A before calling
                    125: *>     this routine. This is needed to compute the solution and error
                    126: *>     bounds correctly.
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] C
                    130: *> \verbatim
                    131: *>          C is DOUBLE PRECISION array, dimension (N)
                    132: *>     The column scale factors for A. If COLEQU = .FALSE., C
                    133: *>     is not accessed. If C is input, each element of C should be a power
                    134: *>     of the radix to ensure a reliable solution and error estimates.
                    135: *>     Scaling by powers of the radix does not cause rounding errors unless
                    136: *>     the result underflows or overflows. Rounding errors during scaling
                    137: *>     lead to refining with a matrix that is not equivalent to the
                    138: *>     input matrix, producing error estimates that may not be
                    139: *>     reliable.
                    140: *> \endverbatim
                    141: *>
                    142: *> \param[in] B
                    143: *> \verbatim
                    144: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    145: *>     The right-hand-side matrix B.
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[in] LDB
                    149: *> \verbatim
                    150: *>          LDB is INTEGER
                    151: *>     The leading dimension of the array B.  LDB >= max(1,N).
                    152: *> \endverbatim
                    153: *>
                    154: *> \param[in,out] Y
                    155: *> \verbatim
                    156: *>          Y is DOUBLE PRECISION array, dimension
                    157: *>                    (LDY,NRHS)
                    158: *>     On entry, the solution matrix X, as computed by DPOTRS.
                    159: *>     On exit, the improved solution matrix Y.
                    160: *> \endverbatim
                    161: *>
                    162: *> \param[in] LDY
                    163: *> \verbatim
                    164: *>          LDY is INTEGER
                    165: *>     The leading dimension of the array Y.  LDY >= max(1,N).
                    166: *> \endverbatim
                    167: *>
                    168: *> \param[out] BERR_OUT
                    169: *> \verbatim
                    170: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
                    171: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
                    172: *>     error for right-hand-side j from the formula
                    173: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    174: *>     where abs(Z) is the componentwise absolute value of the matrix
                    175: *>     or vector Z. This is computed by DLA_LIN_BERR.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[in] N_NORMS
                    179: *> \verbatim
                    180: *>          N_NORMS is INTEGER
                    181: *>     Determines which error bounds to return (see ERR_BNDS_NORM
                    182: *>     and ERR_BNDS_COMP).
                    183: *>     If N_NORMS >= 1 return normwise error bounds.
                    184: *>     If N_NORMS >= 2 return componentwise error bounds.
                    185: *> \endverbatim
                    186: *>
                    187: *> \param[in,out] ERR_BNDS_NORM
                    188: *> \verbatim
                    189: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension
                    190: *>                    (NRHS, N_ERR_BNDS)
                    191: *>     For each right-hand side, this array contains information about
                    192: *>     various error bounds and condition numbers corresponding to the
                    193: *>     normwise relative error, which is defined as follows:
                    194: *>
                    195: *>     Normwise relative error in the ith solution vector:
                    196: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
                    197: *>            ------------------------------
                    198: *>                  max_j abs(X(j,i))
                    199: *>
                    200: *>     The array is indexed by the type of error information as described
                    201: *>     below. There currently are up to three pieces of information
                    202: *>     returned.
                    203: *>
                    204: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    205: *>     right-hand side.
                    206: *>
                    207: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
                    208: *>     three fields:
                    209: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    210: *>              reciprocal condition number is less than the threshold
                    211: *>              sqrt(n) * slamch('Epsilon').
                    212: *>
                    213: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    214: *>              almost certainly within a factor of 10 of the true error
                    215: *>              so long as the next entry is greater than the threshold
                    216: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
                    217: *>              be trusted if the previous boolean is true.
                    218: *>
                    219: *>     err = 3  Reciprocal condition number: Estimated normwise
                    220: *>              reciprocal condition number.  Compared with the threshold
                    221: *>              sqrt(n) * slamch('Epsilon') to determine if the error
                    222: *>              estimate is "guaranteed". These reciprocal condition
                    223: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    224: *>              appropriately scaled matrix Z.
                    225: *>              Let Z = S*A, where S scales each row by a power of the
                    226: *>              radix so all absolute row sums of Z are approximately 1.
                    227: *>
                    228: *>     This subroutine is only responsible for setting the second field
                    229: *>     above.
                    230: *>     See Lapack Working Note 165 for further details and extra
                    231: *>     cautions.
                    232: *> \endverbatim
                    233: *>
                    234: *> \param[in,out] ERR_BNDS_COMP
                    235: *> \verbatim
                    236: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension
                    237: *>                    (NRHS, N_ERR_BNDS)
                    238: *>     For each right-hand side, this array contains information about
                    239: *>     various error bounds and condition numbers corresponding to the
                    240: *>     componentwise relative error, which is defined as follows:
                    241: *>
                    242: *>     Componentwise relative error in the ith solution vector:
                    243: *>                    abs(XTRUE(j,i) - X(j,i))
                    244: *>             max_j ----------------------
                    245: *>                         abs(X(j,i))
                    246: *>
                    247: *>     The array is indexed by the right-hand side i (on which the
                    248: *>     componentwise relative error depends), and the type of error
                    249: *>     information as described below. There currently are up to three
                    250: *>     pieces of information returned for each right-hand side. If
                    251: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
                    252: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
                    253: *>     the first (:,N_ERR_BNDS) entries are returned.
                    254: *>
                    255: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    256: *>     right-hand side.
                    257: *>
                    258: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
                    259: *>     three fields:
                    260: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    261: *>              reciprocal condition number is less than the threshold
                    262: *>              sqrt(n) * slamch('Epsilon').
                    263: *>
                    264: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    265: *>              almost certainly within a factor of 10 of the true error
                    266: *>              so long as the next entry is greater than the threshold
                    267: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
                    268: *>              be trusted if the previous boolean is true.
                    269: *>
                    270: *>     err = 3  Reciprocal condition number: Estimated componentwise
                    271: *>              reciprocal condition number.  Compared with the threshold
                    272: *>              sqrt(n) * slamch('Epsilon') to determine if the error
                    273: *>              estimate is "guaranteed". These reciprocal condition
                    274: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    275: *>              appropriately scaled matrix Z.
                    276: *>              Let Z = S*(A*diag(x)), where x is the solution for the
                    277: *>              current right-hand side and S scales each row of
                    278: *>              A*diag(x) by a power of the radix so all absolute row
                    279: *>              sums of Z are approximately 1.
                    280: *>
                    281: *>     This subroutine is only responsible for setting the second field
                    282: *>     above.
                    283: *>     See Lapack Working Note 165 for further details and extra
                    284: *>     cautions.
                    285: *> \endverbatim
                    286: *>
                    287: *> \param[in] RES
                    288: *> \verbatim
                    289: *>          RES is DOUBLE PRECISION array, dimension (N)
                    290: *>     Workspace to hold the intermediate residual.
                    291: *> \endverbatim
                    292: *>
                    293: *> \param[in] AYB
                    294: *> \verbatim
                    295: *>          AYB is DOUBLE PRECISION array, dimension (N)
                    296: *>     Workspace. This can be the same workspace passed for Y_TAIL.
                    297: *> \endverbatim
                    298: *>
                    299: *> \param[in] DY
                    300: *> \verbatim
                    301: *>          DY is DOUBLE PRECISION array, dimension (N)
                    302: *>     Workspace to hold the intermediate solution.
                    303: *> \endverbatim
                    304: *>
                    305: *> \param[in] Y_TAIL
                    306: *> \verbatim
                    307: *>          Y_TAIL is DOUBLE PRECISION array, dimension (N)
                    308: *>     Workspace to hold the trailing bits of the intermediate solution.
                    309: *> \endverbatim
                    310: *>
                    311: *> \param[in] RCOND
                    312: *> \verbatim
                    313: *>          RCOND is DOUBLE PRECISION
                    314: *>     Reciprocal scaled condition number.  This is an estimate of the
                    315: *>     reciprocal Skeel condition number of the matrix A after
                    316: *>     equilibration (if done).  If this is less than the machine
                    317: *>     precision (in particular, if it is zero), the matrix is singular
                    318: *>     to working precision.  Note that the error may still be small even
                    319: *>     if this number is very small and the matrix appears ill-
                    320: *>     conditioned.
                    321: *> \endverbatim
                    322: *>
                    323: *> \param[in] ITHRESH
                    324: *> \verbatim
                    325: *>          ITHRESH is INTEGER
                    326: *>     The maximum number of residual computations allowed for
                    327: *>     refinement. The default is 10. For 'aggressive' set to 100 to
                    328: *>     permit convergence using approximate factorizations or
                    329: *>     factorizations other than LU. If the factorization uses a
                    330: *>     technique other than Gaussian elimination, the guarantees in
                    331: *>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
                    332: *> \endverbatim
                    333: *>
                    334: *> \param[in] RTHRESH
                    335: *> \verbatim
                    336: *>          RTHRESH is DOUBLE PRECISION
                    337: *>     Determines when to stop refinement if the error estimate stops
                    338: *>     decreasing. Refinement will stop when the next solution no longer
                    339: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
                    340: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
                    341: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
                    342: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
                    343: *>     for more details.
                    344: *> \endverbatim
                    345: *>
                    346: *> \param[in] DZ_UB
                    347: *> \verbatim
                    348: *>          DZ_UB is DOUBLE PRECISION
                    349: *>     Determines when to start considering componentwise convergence.
                    350: *>     Componentwise convergence is only considered after each component
                    351: *>     of the solution Y is stable, which we definte as the relative
                    352: *>     change in each component being less than DZ_UB. The default value
                    353: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
                    354: *>     more details.
                    355: *> \endverbatim
                    356: *>
                    357: *> \param[in] IGNORE_CWISE
                    358: *> \verbatim
                    359: *>          IGNORE_CWISE is LOGICAL
                    360: *>     If .TRUE. then ignore componentwise convergence. Default value
                    361: *>     is .FALSE..
                    362: *> \endverbatim
                    363: *>
                    364: *> \param[out] INFO
                    365: *> \verbatim
                    366: *>          INFO is INTEGER
                    367: *>       = 0:  Successful exit.
                    368: *>       < 0:  if INFO = -i, the ith argument to DPOTRS had an illegal
                    369: *>             value
                    370: *> \endverbatim
                    371: *
                    372: *  Authors:
                    373: *  ========
                    374: *
1.12      bertrand  375: *> \author Univ. of Tennessee
                    376: *> \author Univ. of California Berkeley
                    377: *> \author Univ. of Colorado Denver
                    378: *> \author NAG Ltd.
1.5       bertrand  379: *
1.12      bertrand  380: *> \date December 2016
1.5       bertrand  381: *
                    382: *> \ingroup doublePOcomputational
                    383: *
                    384: *  =====================================================================
1.1       bertrand  385:       SUBROUTINE DLA_PORFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
                    386:      $                                AF, LDAF, COLEQU, C, B, LDB, Y,
                    387:      $                                LDY, BERR_OUT, N_NORMS,
                    388:      $                                ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
                    389:      $                                AYB, DY, Y_TAIL, RCOND, ITHRESH,
                    390:      $                                RTHRESH, DZ_UB, IGNORE_CWISE,
                    391:      $                                INFO )
                    392: *
1.12      bertrand  393: *  -- LAPACK computational routine (version 3.7.0) --
1.5       bertrand  394: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    395: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.12      bertrand  396: *     December 2016
1.1       bertrand  397: *
                    398: *     .. Scalar Arguments ..
                    399:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
                    400:      $                   N_NORMS, ITHRESH
                    401:       CHARACTER          UPLO
                    402:       LOGICAL            COLEQU, IGNORE_CWISE
                    403:       DOUBLE PRECISION   RTHRESH, DZ_UB
                    404: *     ..
                    405: *     .. Array Arguments ..
                    406:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    407:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
                    408:       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
                    409:      $                   ERR_BNDS_NORM( NRHS, * ),
                    410:      $                   ERR_BNDS_COMP( NRHS, * )
                    411: *     ..
                    412: *
                    413: *  =====================================================================
                    414: *
                    415: *     .. Local Scalars ..
                    416:       INTEGER            UPLO2, CNT, I, J, X_STATE, Z_STATE
                    417:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
                    418:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
                    419:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
                    420:      $                   EPS, HUGEVAL, INCR_THRESH
                    421:       LOGICAL            INCR_PREC
                    422: *     ..
                    423: *     .. Parameters ..
                    424:       INTEGER           UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
                    425:      $                  NOPROG_STATE, Y_PREC_STATE, BASE_RESIDUAL,
                    426:      $                  EXTRA_RESIDUAL, EXTRA_Y
                    427:       PARAMETER         ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
                    428:      $                  CONV_STATE = 2, NOPROG_STATE = 3 )
                    429:       PARAMETER         ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
                    430:      $                  EXTRA_Y = 2 )
                    431:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
                    432:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
                    433:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
                    434:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
                    435:      $                   BERR_I = 3 )
                    436:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
                    437:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
                    438:      $                   PIV_GROWTH_I = 9 )
                    439:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    440:      $                   LA_LINRX_CWISE_I
                    441:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    442:      $                   LA_LINRX_ITHRESH_I = 2 )
                    443:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    444:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    445:      $                   LA_LINRX_RCOND_I
                    446:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    447:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    448: *     ..
                    449: *     .. External Functions ..
                    450:       LOGICAL            LSAME
                    451:       EXTERNAL           ILAUPLO
                    452:       INTEGER            ILAUPLO
                    453: *     ..
                    454: *     .. External Subroutines ..
                    455:       EXTERNAL          DAXPY, DCOPY, DPOTRS, DSYMV, BLAS_DSYMV_X,
                    456:      $                  BLAS_DSYMV2_X, DLA_SYAMV, DLA_WWADDW,
                    457:      $                  DLA_LIN_BERR
                    458:       DOUBLE PRECISION   DLAMCH
                    459: *     ..
                    460: *     .. Intrinsic Functions ..
                    461:       INTRINSIC         ABS, MAX, MIN
                    462: *     ..
                    463: *     .. Executable Statements ..
                    464: *
                    465:       IF (INFO.NE.0) RETURN
                    466:       EPS = DLAMCH( 'Epsilon' )
                    467:       HUGEVAL = DLAMCH( 'Overflow' )
                    468: *     Force HUGEVAL to Inf
                    469:       HUGEVAL = HUGEVAL * HUGEVAL
                    470: *     Using HUGEVAL may lead to spurious underflows.
                    471:       INCR_THRESH = DBLE( N ) * EPS
                    472: 
                    473:       IF ( LSAME ( UPLO, 'L' ) ) THEN
                    474:          UPLO2 = ILAUPLO( 'L' )
                    475:       ELSE
                    476:          UPLO2 = ILAUPLO( 'U' )
                    477:       ENDIF
                    478: 
                    479:       DO J = 1, NRHS
                    480:          Y_PREC_STATE = EXTRA_RESIDUAL
                    481:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
                    482:             DO I = 1, N
                    483:                Y_TAIL( I ) = 0.0D+0
                    484:             END DO
                    485:          END IF
                    486: 
                    487:          DXRAT = 0.0D+0
                    488:          DXRATMAX = 0.0D+0
                    489:          DZRAT = 0.0D+0
                    490:          DZRATMAX = 0.0D+0
                    491:          FINAL_DX_X = HUGEVAL
                    492:          FINAL_DZ_Z = HUGEVAL
                    493:          PREVNORMDX = HUGEVAL
                    494:          PREV_DZ_Z = HUGEVAL
                    495:          DZ_Z = HUGEVAL
                    496:          DX_X = HUGEVAL
                    497: 
                    498:          X_STATE = WORKING_STATE
                    499:          Z_STATE = UNSTABLE_STATE
                    500:          INCR_PREC = .FALSE.
                    501: 
                    502:          DO CNT = 1, ITHRESH
                    503: *
                    504: *         Compute residual RES = B_s - op(A_s) * Y,
                    505: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
                    506: *
                    507:             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
                    508:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
                    509:                CALL DSYMV( UPLO, N, -1.0D+0, A, LDA, Y(1,J), 1,
                    510:      $              1.0D+0, RES, 1 )
                    511:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
                    512:                CALL BLAS_DSYMV_X( UPLO2, N, -1.0D+0, A, LDA,
                    513:      $              Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
                    514:             ELSE
                    515:                CALL BLAS_DSYMV2_X(UPLO2, N, -1.0D+0, A, LDA,
                    516:      $              Y(1, J), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE)
                    517:             END IF
                    518: 
                    519: !         XXX: RES is no longer needed.
                    520:             CALL DCOPY( N, RES, 1, DY, 1 )
                    521:             CALL DPOTRS( UPLO, N, 1, AF, LDAF, DY, N, INFO )
                    522: *
                    523: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
                    524: *
                    525:             NORMX = 0.0D+0
                    526:             NORMY = 0.0D+0
                    527:             NORMDX = 0.0D+0
                    528:             DZ_Z = 0.0D+0
                    529:             YMIN = HUGEVAL
                    530: 
                    531:             DO I = 1, N
                    532:                YK = ABS( Y( I, J ) )
                    533:                DYK = ABS( DY( I ) )
                    534: 
                    535:                IF ( YK .NE. 0.0D+0 ) THEN
                    536:                   DZ_Z = MAX( DZ_Z, DYK / YK )
                    537:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
                    538:                   DZ_Z = HUGEVAL
                    539:                END IF
                    540: 
                    541:                YMIN = MIN( YMIN, YK )
                    542: 
                    543:                NORMY = MAX( NORMY, YK )
                    544: 
                    545:                IF ( COLEQU ) THEN
                    546:                   NORMX = MAX( NORMX, YK * C( I ) )
                    547:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
                    548:                ELSE
                    549:                   NORMX = NORMY
                    550:                   NORMDX = MAX( NORMDX, DYK )
                    551:                END IF
                    552:             END DO
                    553: 
                    554:             IF ( NORMX .NE. 0.0D+0 ) THEN
                    555:                DX_X = NORMDX / NORMX
                    556:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
                    557:                DX_X = 0.0D+0
                    558:             ELSE
                    559:                DX_X = HUGEVAL
                    560:             END IF
                    561: 
                    562:             DXRAT = NORMDX / PREVNORMDX
                    563:             DZRAT = DZ_Z / PREV_DZ_Z
                    564: *
                    565: *         Check termination criteria.
                    566: *
                    567:             IF ( YMIN*RCOND .LT. INCR_THRESH*NORMY
                    568:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
                    569:      $           INCR_PREC = .TRUE.
                    570: 
                    571:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
                    572:      $           X_STATE = WORKING_STATE
                    573:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
                    574:                IF ( DX_X .LE. EPS ) THEN
                    575:                   X_STATE = CONV_STATE
                    576:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
                    577:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    578:                      INCR_PREC = .TRUE.
                    579:                   ELSE
                    580:                      X_STATE = NOPROG_STATE
                    581:                   END IF
                    582:                ELSE
                    583:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
                    584:                END IF
                    585:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
                    586:             END IF
                    587: 
                    588:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
                    589:      $           Z_STATE = WORKING_STATE
                    590:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
                    591:      $           Z_STATE = WORKING_STATE
                    592:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
                    593:                IF ( DZ_Z .LE. EPS ) THEN
                    594:                   Z_STATE = CONV_STATE
                    595:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
                    596:                   Z_STATE = UNSTABLE_STATE
                    597:                   DZRATMAX = 0.0D+0
                    598:                   FINAL_DZ_Z = HUGEVAL
                    599:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
                    600:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    601:                      INCR_PREC = .TRUE.
                    602:                   ELSE
                    603:                      Z_STATE = NOPROG_STATE
                    604:                   END IF
                    605:                ELSE
                    606:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
                    607:                END IF
                    608:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    609:             END IF
                    610: 
                    611:             IF ( X_STATE.NE.WORKING_STATE.AND.
                    612:      $           ( IGNORE_CWISE.OR.Z_STATE.NE.WORKING_STATE ) )
                    613:      $           GOTO 666
                    614: 
                    615:             IF ( INCR_PREC ) THEN
                    616:                INCR_PREC = .FALSE.
                    617:                Y_PREC_STATE = Y_PREC_STATE + 1
                    618:                DO I = 1, N
                    619:                   Y_TAIL( I ) = 0.0D+0
                    620:                END DO
                    621:             END IF
                    622: 
                    623:             PREVNORMDX = NORMDX
                    624:             PREV_DZ_Z = DZ_Z
                    625: *
                    626: *           Update soluton.
                    627: *
                    628:             IF (Y_PREC_STATE .LT. EXTRA_Y) THEN
                    629:                CALL DAXPY( N, 1.0D+0, DY, 1, Y(1,J), 1 )
                    630:             ELSE
                    631:                CALL DLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
                    632:             END IF
                    633: 
                    634:          END DO
                    635: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
                    636:  666     CONTINUE
                    637: *
                    638: *     Set final_* when cnt hits ithresh.
                    639: *
                    640:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
                    641:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    642: *
                    643: *     Compute error bounds.
                    644: *
                    645:          IF ( N_NORMS .GE. 1 ) THEN
                    646:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
                    647:      $           FINAL_DX_X / (1 - DXRATMAX)
                    648:          END IF
                    649:          IF ( N_NORMS .GE. 2 ) THEN
                    650:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
                    651:      $           FINAL_DZ_Z / (1 - DZRATMAX)
                    652:          END IF
                    653: *
                    654: *     Compute componentwise relative backward error from formula
                    655: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    656: *     where abs(Z) is the componentwise absolute value of the matrix
                    657: *     or vector Z.
                    658: *
                    659: *        Compute residual RES = B_s - op(A_s) * Y,
                    660: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
                    661: *
                    662:          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
                    663:          CALL DSYMV( UPLO, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0, RES,
                    664:      $     1 )
                    665: 
                    666:          DO I = 1, N
                    667:             AYB( I ) = ABS( B( I, J ) )
                    668:          END DO
                    669: *
                    670: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
                    671: *
                    672:          CALL DLA_SYAMV( UPLO2, N, 1.0D+0,
                    673:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
                    674: 
                    675:          CALL DLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
                    676: *
                    677: *     End of loop for each RHS.
                    678: *
                    679:       END DO
                    680: *
                    681:       RETURN
                    682:       END

CVSweb interface <joel.bertrand@systella.fr>