File:  [local] / rpl / lapack / lapack / dla_porcond.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:28 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       DOUBLE PRECISION FUNCTION DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
    2:      $                                       CMODE, C, INFO, WORK,
    3:      $                                       IWORK )
    4: *
    5: *     -- LAPACK routine (version 3.2.2)                                 --
    6: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    7: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    8: *     -- June 2010                                                    --
    9: *
   10: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   11: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   12: *
   13:       IMPLICIT NONE
   14: *     ..
   15: *     .. Scalar Arguments ..
   16:       CHARACTER          UPLO
   17:       INTEGER            N, LDA, LDAF, INFO, CMODE
   18:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * ),
   19:      $                   C( * )
   20: *     ..
   21: *     .. Array Arguments ..
   22:       INTEGER            IWORK( * )
   23: *     ..
   24: *
   25: *  Purpose
   26: *  =======
   27: *
   28: *     DLA_PORCOND Estimates the Skeel condition number of  op(A) * op2(C)
   29: *     where op2 is determined by CMODE as follows
   30: *     CMODE =  1    op2(C) = C
   31: *     CMODE =  0    op2(C) = I
   32: *     CMODE = -1    op2(C) = inv(C)
   33: *     The Skeel condition number  cond(A) = norminf( |inv(A)||A| )
   34: *     is computed by computing scaling factors R such that
   35: *     diag(R)*A*op2(C) is row equilibrated and computing the standard
   36: *     infinity-norm condition number.
   37: *
   38: *  Arguments
   39: *  ==========
   40: *
   41: *     UPLO    (input) CHARACTER*1
   42: *       = 'U':  Upper triangle of A is stored;
   43: *       = 'L':  Lower triangle of A is stored.
   44: *
   45: *     N       (input) INTEGER
   46: *     The number of linear equations, i.e., the order of the
   47: *     matrix A.  N >= 0.
   48: *
   49: *     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
   50: *     On entry, the N-by-N matrix A.
   51: *
   52: *     LDA     (input) INTEGER
   53: *     The leading dimension of the array A.  LDA >= max(1,N).
   54: *
   55: *     AF      (input) DOUBLE PRECISION array, dimension (LDAF,N)
   56: *     The triangular factor U or L from the Cholesky factorization
   57: *     A = U**T*U or A = L*L**T, as computed by DPOTRF.
   58: *
   59: *     LDAF    (input) INTEGER
   60: *     The leading dimension of the array AF.  LDAF >= max(1,N).
   61: *
   62: *     CMODE   (input) INTEGER
   63: *     Determines op2(C) in the formula op(A) * op2(C) as follows:
   64: *     CMODE =  1    op2(C) = C
   65: *     CMODE =  0    op2(C) = I
   66: *     CMODE = -1    op2(C) = inv(C)
   67: *
   68: *     C       (input) DOUBLE PRECISION array, dimension (N)
   69: *     The vector C in the formula op(A) * op2(C).
   70: *
   71: *     INFO    (output) INTEGER
   72: *       = 0:  Successful exit.
   73: *     i > 0:  The ith argument is invalid.
   74: *
   75: *     WORK    (input) DOUBLE PRECISION array, dimension (3*N).
   76: *     Workspace.
   77: *
   78: *     IWORK   (input) INTEGER array, dimension (N).
   79: *     Workspace.
   80: *
   81: *  =====================================================================
   82: *
   83: *     .. Local Scalars ..
   84:       INTEGER            KASE, I, J
   85:       DOUBLE PRECISION   AINVNM, TMP
   86:       LOGICAL            UP
   87: *     ..
   88: *     .. Array Arguments ..
   89:       INTEGER            ISAVE( 3 )
   90: *     ..
   91: *     .. External Functions ..
   92:       LOGICAL            LSAME
   93:       INTEGER            IDAMAX
   94:       EXTERNAL           LSAME, IDAMAX
   95: *     ..
   96: *     .. External Subroutines ..
   97:       EXTERNAL           DLACN2, DPOTRS, XERBLA
   98: *     ..
   99: *     .. Intrinsic Functions ..
  100:       INTRINSIC          ABS, MAX
  101: *     ..
  102: *     .. Executable Statements ..
  103: *
  104:       DLA_PORCOND = 0.0D+0
  105: *
  106:       INFO = 0
  107:       IF( N.LT.0 ) THEN
  108:          INFO = -2
  109:       END IF
  110:       IF( INFO.NE.0 ) THEN
  111:          CALL XERBLA( 'DLA_PORCOND', -INFO )
  112:          RETURN
  113:       END IF
  114: 
  115:       IF( N.EQ.0 ) THEN
  116:          DLA_PORCOND = 1.0D+0
  117:          RETURN
  118:       END IF
  119:       UP = .FALSE.
  120:       IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  121: *
  122: *     Compute the equilibration matrix R such that
  123: *     inv(R)*A*C has unit 1-norm.
  124: *
  125:       IF ( UP ) THEN
  126:          DO I = 1, N
  127:             TMP = 0.0D+0
  128:             IF ( CMODE .EQ. 1 ) THEN
  129:                DO J = 1, I
  130:                   TMP = TMP + ABS( A( J, I ) * C( J ) )
  131:                END DO
  132:                DO J = I+1, N
  133:                   TMP = TMP + ABS( A( I, J ) * C( J ) )
  134:                END DO
  135:             ELSE IF ( CMODE .EQ. 0 ) THEN
  136:                DO J = 1, I
  137:                   TMP = TMP + ABS( A( J, I ) )
  138:                END DO
  139:                DO J = I+1, N
  140:                   TMP = TMP + ABS( A( I, J ) )
  141:                END DO
  142:             ELSE
  143:                DO J = 1, I
  144:                   TMP = TMP + ABS( A( J ,I ) / C( J ) )
  145:                END DO
  146:                DO J = I+1, N
  147:                   TMP = TMP + ABS( A( I, J ) / C( J ) )
  148:                END DO
  149:             END IF
  150:             WORK( 2*N+I ) = TMP
  151:          END DO
  152:       ELSE
  153:          DO I = 1, N
  154:             TMP = 0.0D+0
  155:             IF ( CMODE .EQ. 1 ) THEN
  156:                DO J = 1, I
  157:                   TMP = TMP + ABS( A( I, J ) * C( J ) )
  158:                END DO
  159:                DO J = I+1, N
  160:                   TMP = TMP + ABS( A( J, I ) * C( J ) )
  161:                END DO
  162:             ELSE IF ( CMODE .EQ. 0 ) THEN
  163:                DO J = 1, I
  164:                   TMP = TMP + ABS( A( I, J ) )
  165:                END DO
  166:                DO J = I+1, N
  167:                   TMP = TMP + ABS( A( J, I ) )
  168:                END DO
  169:             ELSE
  170:                DO J = 1, I
  171:                   TMP = TMP + ABS( A( I, J ) / C( J ) )
  172:                END DO
  173:                DO J = I+1, N
  174:                   TMP = TMP + ABS( A( J, I ) / C( J ) )
  175:                END DO
  176:             END IF
  177:             WORK( 2*N+I ) = TMP
  178:          END DO
  179:       ENDIF
  180: *
  181: *     Estimate the norm of inv(op(A)).
  182: *
  183:       AINVNM = 0.0D+0
  184: 
  185:       KASE = 0
  186:    10 CONTINUE
  187:       CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
  188:       IF( KASE.NE.0 ) THEN
  189:          IF( KASE.EQ.2 ) THEN
  190: *
  191: *           Multiply by R.
  192: *
  193:             DO I = 1, N
  194:                WORK( I ) = WORK( I ) * WORK( 2*N+I )
  195:             END DO
  196: 
  197:             IF (UP) THEN
  198:                CALL DPOTRS( 'Upper', N, 1, AF, LDAF, WORK, N, INFO )
  199:             ELSE
  200:                CALL DPOTRS( 'Lower', N, 1, AF, LDAF, WORK, N, INFO )
  201:             ENDIF
  202: *
  203: *           Multiply by inv(C).
  204: *
  205:             IF ( CMODE .EQ. 1 ) THEN
  206:                DO I = 1, N
  207:                   WORK( I ) = WORK( I ) / C( I )
  208:                END DO
  209:             ELSE IF ( CMODE .EQ. -1 ) THEN
  210:                DO I = 1, N
  211:                   WORK( I ) = WORK( I ) * C( I )
  212:                END DO
  213:             END IF
  214:          ELSE
  215: *
  216: *           Multiply by inv(C').
  217: *
  218:             IF ( CMODE .EQ. 1 ) THEN
  219:                DO I = 1, N
  220:                   WORK( I ) = WORK( I ) / C( I )
  221:                END DO
  222:             ELSE IF ( CMODE .EQ. -1 ) THEN
  223:                DO I = 1, N
  224:                   WORK( I ) = WORK( I ) * C( I )
  225:                END DO
  226:             END IF
  227: 
  228:             IF ( UP ) THEN
  229:                CALL DPOTRS( 'Upper', N, 1, AF, LDAF, WORK, N, INFO )
  230:             ELSE
  231:                CALL DPOTRS( 'Lower', N, 1, AF, LDAF, WORK, N, INFO )
  232:             ENDIF
  233: *
  234: *           Multiply by R.
  235: *
  236:             DO I = 1, N
  237:                WORK( I ) = WORK( I ) * WORK( 2*N+I )
  238:             END DO
  239:          END IF
  240:          GO TO 10
  241:       END IF
  242: *
  243: *     Compute the estimate of the reciprocal condition number.
  244: *
  245:       IF( AINVNM .NE. 0.0D+0 )
  246:      $   DLA_PORCOND = ( 1.0D+0 / AINVNM )
  247: *
  248:       RETURN
  249: *
  250:       END

CVSweb interface <joel.bertrand@systella.fr>