File:  [local] / rpl / lapack / lapack / dla_porcond.f
Revision 1.13: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:53:51 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b DLA_PORCOND estimates the Skeel condition number for a symmetric positive-definite matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLA_PORCOND + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_porcond.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_porcond.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_porcond.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
   22: *                                              CMODE, C, INFO, WORK,
   23: *                                              IWORK )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          UPLO
   27: *       INTEGER            N, LDA, LDAF, INFO, CMODE
   28: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * ),
   29: *      $                   C( * )
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            IWORK( * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *>    DLA_PORCOND Estimates the Skeel condition number of  op(A) * op2(C)
   42: *>    where op2 is determined by CMODE as follows
   43: *>    CMODE =  1    op2(C) = C
   44: *>    CMODE =  0    op2(C) = I
   45: *>    CMODE = -1    op2(C) = inv(C)
   46: *>    The Skeel condition number  cond(A) = norminf( |inv(A)||A| )
   47: *>    is computed by computing scaling factors R such that
   48: *>    diag(R)*A*op2(C) is row equilibrated and computing the standard
   49: *>    infinity-norm condition number.
   50: *> \endverbatim
   51: *
   52: *  Arguments:
   53: *  ==========
   54: *
   55: *> \param[in] UPLO
   56: *> \verbatim
   57: *>          UPLO is CHARACTER*1
   58: *>       = 'U':  Upper triangle of A is stored;
   59: *>       = 'L':  Lower triangle of A is stored.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>     The number of linear equations, i.e., the order of the
   66: *>     matrix A.  N >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] A
   70: *> \verbatim
   71: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   72: *>     On entry, the N-by-N matrix A.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] LDA
   76: *> \verbatim
   77: *>          LDA is INTEGER
   78: *>     The leading dimension of the array A.  LDA >= max(1,N).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] AF
   82: *> \verbatim
   83: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
   84: *>     The triangular factor U or L from the Cholesky factorization
   85: *>     A = U**T*U or A = L*L**T, as computed by DPOTRF.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] LDAF
   89: *> \verbatim
   90: *>          LDAF is INTEGER
   91: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
   92: *> \endverbatim
   93: *>
   94: *> \param[in] CMODE
   95: *> \verbatim
   96: *>          CMODE is INTEGER
   97: *>     Determines op2(C) in the formula op(A) * op2(C) as follows:
   98: *>     CMODE =  1    op2(C) = C
   99: *>     CMODE =  0    op2(C) = I
  100: *>     CMODE = -1    op2(C) = inv(C)
  101: *> \endverbatim
  102: *>
  103: *> \param[in] C
  104: *> \verbatim
  105: *>          C is DOUBLE PRECISION array, dimension (N)
  106: *>     The vector C in the formula op(A) * op2(C).
  107: *> \endverbatim
  108: *>
  109: *> \param[out] INFO
  110: *> \verbatim
  111: *>          INFO is INTEGER
  112: *>       = 0:  Successful exit.
  113: *>     i > 0:  The ith argument is invalid.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] WORK
  117: *> \verbatim
  118: *>          WORK is DOUBLE PRECISION array, dimension (3*N).
  119: *>     Workspace.
  120: *> \endverbatim
  121: *>
  122: *> \param[in] IWORK
  123: *> \verbatim
  124: *>          IWORK is INTEGER array, dimension (N).
  125: *>     Workspace.
  126: *> \endverbatim
  127: *
  128: *  Authors:
  129: *  ========
  130: *
  131: *> \author Univ. of Tennessee
  132: *> \author Univ. of California Berkeley
  133: *> \author Univ. of Colorado Denver
  134: *> \author NAG Ltd.
  135: *
  136: *> \date December 2016
  137: *
  138: *> \ingroup doublePOcomputational
  139: *
  140: *  =====================================================================
  141:       DOUBLE PRECISION FUNCTION DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
  142:      $                                       CMODE, C, INFO, WORK,
  143:      $                                       IWORK )
  144: *
  145: *  -- LAPACK computational routine (version 3.7.0) --
  146: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  147: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  148: *     December 2016
  149: *
  150: *     .. Scalar Arguments ..
  151:       CHARACTER          UPLO
  152:       INTEGER            N, LDA, LDAF, INFO, CMODE
  153:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * ),
  154:      $                   C( * )
  155: *     ..
  156: *     .. Array Arguments ..
  157:       INTEGER            IWORK( * )
  158: *     ..
  159: *
  160: *  =====================================================================
  161: *
  162: *     .. Local Scalars ..
  163:       INTEGER            KASE, I, J
  164:       DOUBLE PRECISION   AINVNM, TMP
  165:       LOGICAL            UP
  166: *     ..
  167: *     .. Array Arguments ..
  168:       INTEGER            ISAVE( 3 )
  169: *     ..
  170: *     .. External Functions ..
  171:       LOGICAL            LSAME
  172:       EXTERNAL           LSAME
  173: *     ..
  174: *     .. External Subroutines ..
  175:       EXTERNAL           DLACN2, DPOTRS, XERBLA
  176: *     ..
  177: *     .. Intrinsic Functions ..
  178:       INTRINSIC          ABS, MAX
  179: *     ..
  180: *     .. Executable Statements ..
  181: *
  182:       DLA_PORCOND = 0.0D+0
  183: *
  184:       INFO = 0
  185:       IF( N.LT.0 ) THEN
  186:          INFO = -2
  187:       END IF
  188:       IF( INFO.NE.0 ) THEN
  189:          CALL XERBLA( 'DLA_PORCOND', -INFO )
  190:          RETURN
  191:       END IF
  192: 
  193:       IF( N.EQ.0 ) THEN
  194:          DLA_PORCOND = 1.0D+0
  195:          RETURN
  196:       END IF
  197:       UP = .FALSE.
  198:       IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  199: *
  200: *     Compute the equilibration matrix R such that
  201: *     inv(R)*A*C has unit 1-norm.
  202: *
  203:       IF ( UP ) THEN
  204:          DO I = 1, N
  205:             TMP = 0.0D+0
  206:             IF ( CMODE .EQ. 1 ) THEN
  207:                DO J = 1, I
  208:                   TMP = TMP + ABS( A( J, I ) * C( J ) )
  209:                END DO
  210:                DO J = I+1, N
  211:                   TMP = TMP + ABS( A( I, J ) * C( J ) )
  212:                END DO
  213:             ELSE IF ( CMODE .EQ. 0 ) THEN
  214:                DO J = 1, I
  215:                   TMP = TMP + ABS( A( J, I ) )
  216:                END DO
  217:                DO J = I+1, N
  218:                   TMP = TMP + ABS( A( I, J ) )
  219:                END DO
  220:             ELSE
  221:                DO J = 1, I
  222:                   TMP = TMP + ABS( A( J ,I ) / C( J ) )
  223:                END DO
  224:                DO J = I+1, N
  225:                   TMP = TMP + ABS( A( I, J ) / C( J ) )
  226:                END DO
  227:             END IF
  228:             WORK( 2*N+I ) = TMP
  229:          END DO
  230:       ELSE
  231:          DO I = 1, N
  232:             TMP = 0.0D+0
  233:             IF ( CMODE .EQ. 1 ) THEN
  234:                DO J = 1, I
  235:                   TMP = TMP + ABS( A( I, J ) * C( J ) )
  236:                END DO
  237:                DO J = I+1, N
  238:                   TMP = TMP + ABS( A( J, I ) * C( J ) )
  239:                END DO
  240:             ELSE IF ( CMODE .EQ. 0 ) THEN
  241:                DO J = 1, I
  242:                   TMP = TMP + ABS( A( I, J ) )
  243:                END DO
  244:                DO J = I+1, N
  245:                   TMP = TMP + ABS( A( J, I ) )
  246:                END DO
  247:             ELSE
  248:                DO J = 1, I
  249:                   TMP = TMP + ABS( A( I, J ) / C( J ) )
  250:                END DO
  251:                DO J = I+1, N
  252:                   TMP = TMP + ABS( A( J, I ) / C( J ) )
  253:                END DO
  254:             END IF
  255:             WORK( 2*N+I ) = TMP
  256:          END DO
  257:       ENDIF
  258: *
  259: *     Estimate the norm of inv(op(A)).
  260: *
  261:       AINVNM = 0.0D+0
  262: 
  263:       KASE = 0
  264:    10 CONTINUE
  265:       CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
  266:       IF( KASE.NE.0 ) THEN
  267:          IF( KASE.EQ.2 ) THEN
  268: *
  269: *           Multiply by R.
  270: *
  271:             DO I = 1, N
  272:                WORK( I ) = WORK( I ) * WORK( 2*N+I )
  273:             END DO
  274: 
  275:             IF (UP) THEN
  276:                CALL DPOTRS( 'Upper', N, 1, AF, LDAF, WORK, N, INFO )
  277:             ELSE
  278:                CALL DPOTRS( 'Lower', N, 1, AF, LDAF, WORK, N, INFO )
  279:             ENDIF
  280: *
  281: *           Multiply by inv(C).
  282: *
  283:             IF ( CMODE .EQ. 1 ) THEN
  284:                DO I = 1, N
  285:                   WORK( I ) = WORK( I ) / C( I )
  286:                END DO
  287:             ELSE IF ( CMODE .EQ. -1 ) THEN
  288:                DO I = 1, N
  289:                   WORK( I ) = WORK( I ) * C( I )
  290:                END DO
  291:             END IF
  292:          ELSE
  293: *
  294: *           Multiply by inv(C**T).
  295: *
  296:             IF ( CMODE .EQ. 1 ) THEN
  297:                DO I = 1, N
  298:                   WORK( I ) = WORK( I ) / C( I )
  299:                END DO
  300:             ELSE IF ( CMODE .EQ. -1 ) THEN
  301:                DO I = 1, N
  302:                   WORK( I ) = WORK( I ) * C( I )
  303:                END DO
  304:             END IF
  305: 
  306:             IF ( UP ) THEN
  307:                CALL DPOTRS( 'Upper', N, 1, AF, LDAF, WORK, N, INFO )
  308:             ELSE
  309:                CALL DPOTRS( 'Lower', N, 1, AF, LDAF, WORK, N, INFO )
  310:             ENDIF
  311: *
  312: *           Multiply by R.
  313: *
  314:             DO I = 1, N
  315:                WORK( I ) = WORK( I ) * WORK( 2*N+I )
  316:             END DO
  317:          END IF
  318:          GO TO 10
  319:       END IF
  320: *
  321: *     Compute the estimate of the reciprocal condition number.
  322: *
  323:       IF( AINVNM .NE. 0.0D+0 )
  324:      $   DLA_PORCOND = ( 1.0D+0 / AINVNM )
  325: *
  326:       RETURN
  327: *
  328:       END

CVSweb interface <joel.bertrand@systella.fr>