File:  [local] / rpl / lapack / lapack / dla_gerfsx_extended.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:15 2012 UTC (11 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b DLA_GERFSX_EXTENDED
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLA_GERFSX_EXTENDED + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gerfsx_extended.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gerfsx_extended.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gerfsx_extended.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
   22: *                                       LDA, AF, LDAF, IPIV, COLEQU, C, B,
   23: *                                       LDB, Y, LDY, BERR_OUT, N_NORMS,
   24: *                                       ERRS_N, ERRS_C, RES, AYB, DY,
   25: *                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
   26: *                                       DZ_UB, IGNORE_CWISE, INFO )
   27:    28: *       .. Scalar Arguments ..
   29: *       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
   30: *      $                   TRANS_TYPE, N_NORMS, ITHRESH
   31: *       LOGICAL            COLEQU, IGNORE_CWISE
   32: *       DOUBLE PRECISION   RTHRESH, DZ_UB
   33: *       ..
   34: *       .. Array Arguments ..
   35: *       INTEGER            IPIV( * )
   36: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   37: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
   38: *       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
   39: *      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
   40: *       ..
   41: *  
   42: *
   43: *> \par Purpose:
   44: *  =============
   45: *>
   46: *> \verbatim
   47: *>
   48: *> 
   49: *> DLA_GERFSX_EXTENDED improves the computed solution to a system of
   50: *> linear equations by performing extra-precise iterative refinement
   51: *> and provides error bounds and backward error estimates for the solution.
   52: *> This subroutine is called by DGERFSX to perform iterative refinement.
   53: *> In addition to normwise error bound, the code provides maximum
   54: *> componentwise error bound if possible. See comments for ERRS_N
   55: *> and ERRS_C for details of the error bounds. Note that this
   56: *> subroutine is only resonsible for setting the second fields of
   57: *> ERRS_N and ERRS_C.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \param[in] PREC_TYPE
   64: *> \verbatim
   65: *>          PREC_TYPE is INTEGER
   66: *>     Specifies the intermediate precision to be used in refinement.
   67: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
   68: *>     P    = 'S':  Single
   69: *>          = 'D':  Double
   70: *>          = 'I':  Indigenous
   71: *>          = 'X', 'E':  Extra
   72: *> \endverbatim
   73: *>
   74: *> \param[in] TRANS_TYPE
   75: *> \verbatim
   76: *>          TRANS_TYPE is INTEGER
   77: *>     Specifies the transposition operation on A.
   78: *>     The value is defined by ILATRANS(T) where T is a CHARACTER and
   79: *>     T    = 'N':  No transpose
   80: *>          = 'T':  Transpose
   81: *>          = 'C':  Conjugate transpose
   82: *> \endverbatim
   83: *>
   84: *> \param[in] N
   85: *> \verbatim
   86: *>          N is INTEGER
   87: *>     The number of linear equations, i.e., the order of the
   88: *>     matrix A.  N >= 0.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] NRHS
   92: *> \verbatim
   93: *>          NRHS is INTEGER
   94: *>     The number of right-hand-sides, i.e., the number of columns of the
   95: *>     matrix B.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] A
   99: *> \verbatim
  100: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  101: *>     On entry, the N-by-N matrix A.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] LDA
  105: *> \verbatim
  106: *>          LDA is INTEGER
  107: *>     The leading dimension of the array A.  LDA >= max(1,N).
  108: *> \endverbatim
  109: *>
  110: *> \param[in] AF
  111: *> \verbatim
  112: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
  113: *>     The factors L and U from the factorization
  114: *>     A = P*L*U as computed by DGETRF.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] LDAF
  118: *> \verbatim
  119: *>          LDAF is INTEGER
  120: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  121: *> \endverbatim
  122: *>
  123: *> \param[in] IPIV
  124: *> \verbatim
  125: *>          IPIV is INTEGER array, dimension (N)
  126: *>     The pivot indices from the factorization A = P*L*U
  127: *>     as computed by DGETRF; row i of the matrix was interchanged
  128: *>     with row IPIV(i).
  129: *> \endverbatim
  130: *>
  131: *> \param[in] COLEQU
  132: *> \verbatim
  133: *>          COLEQU is LOGICAL
  134: *>     If .TRUE. then column equilibration was done to A before calling
  135: *>     this routine. This is needed to compute the solution and error
  136: *>     bounds correctly.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] C
  140: *> \verbatim
  141: *>          C is DOUBLE PRECISION array, dimension (N)
  142: *>     The column scale factors for A. If COLEQU = .FALSE., C
  143: *>     is not accessed. If C is input, each element of C should be a power
  144: *>     of the radix to ensure a reliable solution and error estimates.
  145: *>     Scaling by powers of the radix does not cause rounding errors unless
  146: *>     the result underflows or overflows. Rounding errors during scaling
  147: *>     lead to refining with a matrix that is not equivalent to the
  148: *>     input matrix, producing error estimates that may not be
  149: *>     reliable.
  150: *> \endverbatim
  151: *>
  152: *> \param[in] B
  153: *> \verbatim
  154: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  155: *>     The right-hand-side matrix B.
  156: *> \endverbatim
  157: *>
  158: *> \param[in] LDB
  159: *> \verbatim
  160: *>          LDB is INTEGER
  161: *>     The leading dimension of the array B.  LDB >= max(1,N).
  162: *> \endverbatim
  163: *>
  164: *> \param[in,out] Y
  165: *> \verbatim
  166: *>          Y is DOUBLE PRECISION array, dimension
  167: *>                    (LDY,NRHS)
  168: *>     On entry, the solution matrix X, as computed by DGETRS.
  169: *>     On exit, the improved solution matrix Y.
  170: *> \endverbatim
  171: *>
  172: *> \param[in] LDY
  173: *> \verbatim
  174: *>          LDY is INTEGER
  175: *>     The leading dimension of the array Y.  LDY >= max(1,N).
  176: *> \endverbatim
  177: *>
  178: *> \param[out] BERR_OUT
  179: *> \verbatim
  180: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
  181: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
  182: *>     error for right-hand-side j from the formula
  183: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  184: *>     where abs(Z) is the componentwise absolute value of the matrix
  185: *>     or vector Z. This is computed by DLA_LIN_BERR.
  186: *> \endverbatim
  187: *>
  188: *> \param[in] N_NORMS
  189: *> \verbatim
  190: *>          N_NORMS is INTEGER
  191: *>     Determines which error bounds to return (see ERRS_N
  192: *>     and ERRS_C).
  193: *>     If N_NORMS >= 1 return normwise error bounds.
  194: *>     If N_NORMS >= 2 return componentwise error bounds.
  195: *> \endverbatim
  196: *>
  197: *> \param[in,out] ERRS_N
  198: *> \verbatim
  199: *>          ERRS_N is DOUBLE PRECISION array, dimension
  200: *>                    (NRHS, N_ERR_BNDS)
  201: *>     For each right-hand side, this array contains information about
  202: *>     various error bounds and condition numbers corresponding to the
  203: *>     normwise relative error, which is defined as follows:
  204: *>
  205: *>     Normwise relative error in the ith solution vector:
  206: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  207: *>            ------------------------------
  208: *>                  max_j abs(X(j,i))
  209: *>
  210: *>     The array is indexed by the type of error information as described
  211: *>     below. There currently are up to three pieces of information
  212: *>     returned.
  213: *>
  214: *>     The first index in ERRS_N(i,:) corresponds to the ith
  215: *>     right-hand side.
  216: *>
  217: *>     The second index in ERRS_N(:,err) contains the following
  218: *>     three fields:
  219: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  220: *>              reciprocal condition number is less than the threshold
  221: *>              sqrt(n) * slamch('Epsilon').
  222: *>
  223: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  224: *>              almost certainly within a factor of 10 of the true error
  225: *>              so long as the next entry is greater than the threshold
  226: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  227: *>              be trusted if the previous boolean is true.
  228: *>
  229: *>     err = 3  Reciprocal condition number: Estimated normwise
  230: *>              reciprocal condition number.  Compared with the threshold
  231: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  232: *>              estimate is "guaranteed". These reciprocal condition
  233: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  234: *>              appropriately scaled matrix Z.
  235: *>              Let Z = S*A, where S scales each row by a power of the
  236: *>              radix so all absolute row sums of Z are approximately 1.
  237: *>
  238: *>     This subroutine is only responsible for setting the second field
  239: *>     above.
  240: *>     See Lapack Working Note 165 for further details and extra
  241: *>     cautions.
  242: *> \endverbatim
  243: *>
  244: *> \param[in,out] ERRS_C
  245: *> \verbatim
  246: *>          ERRS_C is DOUBLE PRECISION array, dimension
  247: *>                    (NRHS, N_ERR_BNDS)
  248: *>     For each right-hand side, this array contains information about
  249: *>     various error bounds and condition numbers corresponding to the
  250: *>     componentwise relative error, which is defined as follows:
  251: *>
  252: *>     Componentwise relative error in the ith solution vector:
  253: *>                    abs(XTRUE(j,i) - X(j,i))
  254: *>             max_j ----------------------
  255: *>                         abs(X(j,i))
  256: *>
  257: *>     The array is indexed by the right-hand side i (on which the
  258: *>     componentwise relative error depends), and the type of error
  259: *>     information as described below. There currently are up to three
  260: *>     pieces of information returned for each right-hand side. If
  261: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  262: *>     ERRS_C is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  263: *>     the first (:,N_ERR_BNDS) entries are returned.
  264: *>
  265: *>     The first index in ERRS_C(i,:) corresponds to the ith
  266: *>     right-hand side.
  267: *>
  268: *>     The second index in ERRS_C(:,err) contains the following
  269: *>     three fields:
  270: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  271: *>              reciprocal condition number is less than the threshold
  272: *>              sqrt(n) * slamch('Epsilon').
  273: *>
  274: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  275: *>              almost certainly within a factor of 10 of the true error
  276: *>              so long as the next entry is greater than the threshold
  277: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  278: *>              be trusted if the previous boolean is true.
  279: *>
  280: *>     err = 3  Reciprocal condition number: Estimated componentwise
  281: *>              reciprocal condition number.  Compared with the threshold
  282: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  283: *>              estimate is "guaranteed". These reciprocal condition
  284: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  285: *>              appropriately scaled matrix Z.
  286: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  287: *>              current right-hand side and S scales each row of
  288: *>              A*diag(x) by a power of the radix so all absolute row
  289: *>              sums of Z are approximately 1.
  290: *>
  291: *>     This subroutine is only responsible for setting the second field
  292: *>     above.
  293: *>     See Lapack Working Note 165 for further details and extra
  294: *>     cautions.
  295: *> \endverbatim
  296: *>
  297: *> \param[in] RES
  298: *> \verbatim
  299: *>          RES is DOUBLE PRECISION array, dimension (N)
  300: *>     Workspace to hold the intermediate residual.
  301: *> \endverbatim
  302: *>
  303: *> \param[in] AYB
  304: *> \verbatim
  305: *>          AYB is DOUBLE PRECISION array, dimension (N)
  306: *>     Workspace. This can be the same workspace passed for Y_TAIL.
  307: *> \endverbatim
  308: *>
  309: *> \param[in] DY
  310: *> \verbatim
  311: *>          DY is DOUBLE PRECISION array, dimension (N)
  312: *>     Workspace to hold the intermediate solution.
  313: *> \endverbatim
  314: *>
  315: *> \param[in] Y_TAIL
  316: *> \verbatim
  317: *>          Y_TAIL is DOUBLE PRECISION array, dimension (N)
  318: *>     Workspace to hold the trailing bits of the intermediate solution.
  319: *> \endverbatim
  320: *>
  321: *> \param[in] RCOND
  322: *> \verbatim
  323: *>          RCOND is DOUBLE PRECISION
  324: *>     Reciprocal scaled condition number.  This is an estimate of the
  325: *>     reciprocal Skeel condition number of the matrix A after
  326: *>     equilibration (if done).  If this is less than the machine
  327: *>     precision (in particular, if it is zero), the matrix is singular
  328: *>     to working precision.  Note that the error may still be small even
  329: *>     if this number is very small and the matrix appears ill-
  330: *>     conditioned.
  331: *> \endverbatim
  332: *>
  333: *> \param[in] ITHRESH
  334: *> \verbatim
  335: *>          ITHRESH is INTEGER
  336: *>     The maximum number of residual computations allowed for
  337: *>     refinement. The default is 10. For 'aggressive' set to 100 to
  338: *>     permit convergence using approximate factorizations or
  339: *>     factorizations other than LU. If the factorization uses a
  340: *>     technique other than Gaussian elimination, the guarantees in
  341: *>     ERRS_N and ERRS_C may no longer be trustworthy.
  342: *> \endverbatim
  343: *>
  344: *> \param[in] RTHRESH
  345: *> \verbatim
  346: *>          RTHRESH is DOUBLE PRECISION
  347: *>     Determines when to stop refinement if the error estimate stops
  348: *>     decreasing. Refinement will stop when the next solution no longer
  349: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  350: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  351: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
  352: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
  353: *>     for more details.
  354: *> \endverbatim
  355: *>
  356: *> \param[in] DZ_UB
  357: *> \verbatim
  358: *>          DZ_UB is DOUBLE PRECISION
  359: *>     Determines when to start considering componentwise convergence.
  360: *>     Componentwise convergence is only considered after each component
  361: *>     of the solution Y is stable, which we definte as the relative
  362: *>     change in each component being less than DZ_UB. The default value
  363: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
  364: *>     more details.
  365: *> \endverbatim
  366: *>
  367: *> \param[in] IGNORE_CWISE
  368: *> \verbatim
  369: *>          IGNORE_CWISE is LOGICAL
  370: *>     If .TRUE. then ignore componentwise convergence. Default value
  371: *>     is .FALSE..
  372: *> \endverbatim
  373: *>
  374: *> \param[out] INFO
  375: *> \verbatim
  376: *>          INFO is INTEGER
  377: *>       = 0:  Successful exit.
  378: *>       < 0:  if INFO = -i, the ith argument to DGETRS had an illegal
  379: *>             value
  380: *> \endverbatim
  381: *
  382: *  Authors:
  383: *  ========
  384: *
  385: *> \author Univ. of Tennessee 
  386: *> \author Univ. of California Berkeley 
  387: *> \author Univ. of Colorado Denver 
  388: *> \author NAG Ltd. 
  389: *
  390: *> \date November 2011
  391: *
  392: *> \ingroup doubleGEcomputational
  393: *
  394: *  =====================================================================
  395:       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
  396:      $                                LDA, AF, LDAF, IPIV, COLEQU, C, B,
  397:      $                                LDB, Y, LDY, BERR_OUT, N_NORMS,
  398:      $                                ERRS_N, ERRS_C, RES, AYB, DY,
  399:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
  400:      $                                DZ_UB, IGNORE_CWISE, INFO )
  401: *
  402: *  -- LAPACK computational routine (version 3.4.0) --
  403: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  404: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  405: *     November 2011
  406: *
  407: *     .. Scalar Arguments ..
  408:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  409:      $                   TRANS_TYPE, N_NORMS, ITHRESH
  410:       LOGICAL            COLEQU, IGNORE_CWISE
  411:       DOUBLE PRECISION   RTHRESH, DZ_UB
  412: *     ..
  413: *     .. Array Arguments ..
  414:       INTEGER            IPIV( * )
  415:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  416:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  417:       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
  418:      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
  419: *     ..
  420: *
  421: *  =====================================================================
  422: *
  423: *     .. Local Scalars ..
  424:       CHARACTER          TRANS
  425:       INTEGER            CNT, I, J, X_STATE, Z_STATE, Y_PREC_STATE
  426:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  427:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  428:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  429:      $                   EPS, HUGEVAL, INCR_THRESH
  430:       LOGICAL            INCR_PREC
  431: *     ..
  432: *     .. Parameters ..
  433:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  434:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
  435:      $                   EXTRA_Y
  436:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  437:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
  438:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  439:      $                   EXTRA_Y = 2 )
  440:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  441:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  442:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  443:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  444:      $                   BERR_I = 3 )
  445:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  446:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  447:      $                   PIV_GROWTH_I = 9 )
  448:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  449:      $                   LA_LINRX_CWISE_I
  450:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  451:      $                   LA_LINRX_ITHRESH_I = 2 )
  452:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  453:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  454:      $                   LA_LINRX_RCOND_I
  455:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  456:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  457: *     ..
  458: *     .. External Subroutines ..
  459:       EXTERNAL           DAXPY, DCOPY, DGETRS, DGEMV, BLAS_DGEMV_X,
  460:      $                   BLAS_DGEMV2_X, DLA_GEAMV, DLA_WWADDW, DLAMCH,
  461:      $                   CHLA_TRANSTYPE, DLA_LIN_BERR
  462:       DOUBLE PRECISION   DLAMCH
  463:       CHARACTER          CHLA_TRANSTYPE
  464: *     ..
  465: *     .. Intrinsic Functions ..
  466:       INTRINSIC          ABS, MAX, MIN
  467: *     ..
  468: *     .. Executable Statements ..
  469: *
  470:       IF ( INFO.NE.0 ) RETURN
  471:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
  472:       EPS = DLAMCH( 'Epsilon' )
  473:       HUGEVAL = DLAMCH( 'Overflow' )
  474: *     Force HUGEVAL to Inf
  475:       HUGEVAL = HUGEVAL * HUGEVAL
  476: *     Using HUGEVAL may lead to spurious underflows.
  477:       INCR_THRESH = DBLE( N ) * EPS
  478: *
  479:       DO J = 1, NRHS
  480:          Y_PREC_STATE = EXTRA_RESIDUAL
  481:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  482:             DO I = 1, N
  483:                Y_TAIL( I ) = 0.0D+0
  484:             END DO
  485:          END IF
  486: 
  487:          DXRAT = 0.0D+0
  488:          DXRATMAX = 0.0D+0
  489:          DZRAT = 0.0D+0
  490:          DZRATMAX = 0.0D+0
  491:          FINAL_DX_X = HUGEVAL
  492:          FINAL_DZ_Z = HUGEVAL
  493:          PREVNORMDX = HUGEVAL
  494:          PREV_DZ_Z = HUGEVAL
  495:          DZ_Z = HUGEVAL
  496:          DX_X = HUGEVAL
  497: 
  498:          X_STATE = WORKING_STATE
  499:          Z_STATE = UNSTABLE_STATE
  500:          INCR_PREC = .FALSE.
  501: 
  502:          DO CNT = 1, ITHRESH
  503: *
  504: *         Compute residual RES = B_s - op(A_s) * Y,
  505: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
  506: *
  507:             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  508:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
  509:                CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y( 1, J ), 1,
  510:      $              1.0D+0, RES, 1 )
  511:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
  512:                CALL BLAS_DGEMV_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
  513:      $              Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
  514:             ELSE
  515:                CALL BLAS_DGEMV2_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
  516:      $              Y( 1, J ), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE )
  517:             END IF
  518: 
  519: !        XXX: RES is no longer needed.
  520:             CALL DCOPY( N, RES, 1, DY, 1 )
  521:             CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, DY, N, INFO )
  522: *
  523: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  524: *
  525:             NORMX = 0.0D+0
  526:             NORMY = 0.0D+0
  527:             NORMDX = 0.0D+0
  528:             DZ_Z = 0.0D+0
  529:             YMIN = HUGEVAL
  530: *
  531:             DO I = 1, N
  532:                YK = ABS( Y( I, J ) )
  533:                DYK = ABS( DY( I ) )
  534: 
  535:                IF ( YK .NE. 0.0D+0 ) THEN
  536:                   DZ_Z = MAX( DZ_Z, DYK / YK )
  537:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  538:                   DZ_Z = HUGEVAL
  539:                END IF
  540: 
  541:                YMIN = MIN( YMIN, YK )
  542: 
  543:                NORMY = MAX( NORMY, YK )
  544: 
  545:                IF ( COLEQU ) THEN
  546:                   NORMX = MAX( NORMX, YK * C( I ) )
  547:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
  548:                ELSE
  549:                   NORMX = NORMY
  550:                   NORMDX = MAX( NORMDX, DYK )
  551:                END IF
  552:             END DO
  553: 
  554:             IF ( NORMX .NE. 0.0D+0 ) THEN
  555:                DX_X = NORMDX / NORMX
  556:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  557:                DX_X = 0.0D+0
  558:             ELSE
  559:                DX_X = HUGEVAL
  560:             END IF
  561: 
  562:             DXRAT = NORMDX / PREVNORMDX
  563:             DZRAT = DZ_Z / PREV_DZ_Z
  564: *
  565: *         Check termination criteria
  566: *
  567:             IF (.NOT.IGNORE_CWISE
  568:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
  569:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y)
  570:      $           INCR_PREC = .TRUE.
  571: 
  572:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  573:      $           X_STATE = WORKING_STATE
  574:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
  575:                IF ( DX_X .LE. EPS ) THEN
  576:                   X_STATE = CONV_STATE
  577:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  578:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  579:                      INCR_PREC = .TRUE.
  580:                   ELSE
  581:                      X_STATE = NOPROG_STATE
  582:                   END IF
  583:                ELSE
  584:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  585:                END IF
  586:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  587:             END IF
  588: 
  589:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  590:      $           Z_STATE = WORKING_STATE
  591:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  592:      $           Z_STATE = WORKING_STATE
  593:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  594:                IF ( DZ_Z .LE. EPS ) THEN
  595:                   Z_STATE = CONV_STATE
  596:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  597:                   Z_STATE = UNSTABLE_STATE
  598:                   DZRATMAX = 0.0D+0
  599:                   FINAL_DZ_Z = HUGEVAL
  600:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  601:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  602:                      INCR_PREC = .TRUE.
  603:                   ELSE
  604:                      Z_STATE = NOPROG_STATE
  605:                   END IF
  606:                ELSE
  607:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  608:                END IF
  609:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  610:             END IF
  611: *
  612: *           Exit if both normwise and componentwise stopped working,
  613: *           but if componentwise is unstable, let it go at least two
  614: *           iterations.
  615: *
  616:             IF ( X_STATE.NE.WORKING_STATE ) THEN
  617:                IF ( IGNORE_CWISE) GOTO 666
  618:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
  619:      $              GOTO 666
  620:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
  621:             END IF
  622: 
  623:             IF ( INCR_PREC ) THEN
  624:                INCR_PREC = .FALSE.
  625:                Y_PREC_STATE = Y_PREC_STATE + 1
  626:                DO I = 1, N
  627:                   Y_TAIL( I ) = 0.0D+0
  628:                END DO
  629:             END IF
  630: 
  631:             PREVNORMDX = NORMDX
  632:             PREV_DZ_Z = DZ_Z
  633: *
  634: *           Update soluton.
  635: *
  636:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
  637:                CALL DAXPY( N, 1.0D+0, DY, 1, Y( 1, J ), 1 )
  638:             ELSE
  639:                CALL DLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
  640:             END IF
  641: 
  642:          END DO
  643: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
  644:  666     CONTINUE
  645: *
  646: *     Set final_* when cnt hits ithresh.
  647: *
  648:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  649:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  650: *
  651: *     Compute error bounds
  652: *
  653:          IF (N_NORMS .GE. 1) THEN
  654:             ERRS_N( J, LA_LINRX_ERR_I ) = FINAL_DX_X / (1 - DXRATMAX)
  655:          END IF
  656:          IF ( N_NORMS .GE. 2 ) THEN
  657:             ERRS_C( J, LA_LINRX_ERR_I ) = FINAL_DZ_Z / (1 - DZRATMAX)
  658:          END IF
  659: *
  660: *     Compute componentwise relative backward error from formula
  661: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  662: *     where abs(Z) is the componentwise absolute value of the matrix
  663: *     or vector Z.
  664: *
  665: *         Compute residual RES = B_s - op(A_s) * Y,
  666: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
  667: *
  668:          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  669:          CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0, 
  670:      $     RES, 1 )
  671: 
  672:          DO I = 1, N
  673:             AYB( I ) = ABS( B( I, J ) )
  674:          END DO
  675: *
  676: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
  677: *
  678:          CALL DLA_GEAMV ( TRANS_TYPE, N, N, 1.0D+0,
  679:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
  680: 
  681:          CALL DLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
  682: *
  683: *     End of loop for each RHS.
  684: *
  685:       END DO
  686: *
  687:       RETURN
  688:       END

CVSweb interface <joel.bertrand@systella.fr>