File:  [local] / rpl / lapack / lapack / dla_gerfsx_extended.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:28 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
    2:      $                                LDA, AF, LDAF, IPIV, COLEQU, C, B,
    3:      $                                LDB, Y, LDY, BERR_OUT, N_NORMS,
    4:      $                                ERRS_N, ERRS_C, RES, AYB, DY,
    5:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
    6:      $                                DZ_UB, IGNORE_CWISE, INFO )
    7: *
    8: *     -- LAPACK routine (version 3.2.1)                                 --
    9: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
   10: *     -- Jason Riedy of Univ. of California Berkeley.                 --
   11: *     -- April 2009                                                   --
   12: *
   13: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   14: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   15: *
   16:       IMPLICIT NONE
   17: *     ..
   18: *     .. Scalar Arguments ..
   19:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
   20:      $                   TRANS_TYPE, N_NORMS, ITHRESH
   21:       LOGICAL            COLEQU, IGNORE_CWISE
   22:       DOUBLE PRECISION   RTHRESH, DZ_UB
   23: *     ..
   24: *     .. Array Arguments ..
   25:       INTEGER            IPIV( * )
   26:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   27:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
   28:       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
   29:      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
   30: *     ..
   31: *
   32: *  Purpose
   33: *  =======
   34:    35: *  DLA_GERFSX_EXTENDED improves the computed solution to a system of
   36: *  linear equations by performing extra-precise iterative refinement
   37: *  and provides error bounds and backward error estimates for the solution.
   38: *  This subroutine is called by DGERFSX to perform iterative refinement.
   39: *  In addition to normwise error bound, the code provides maximum
   40: *  componentwise error bound if possible. See comments for ERR_BNDS_NORM
   41: *  and ERR_BNDS_COMP for details of the error bounds. Note that this
   42: *  subroutine is only resonsible for setting the second fields of
   43: *  ERR_BNDS_NORM and ERR_BNDS_COMP.
   44: *
   45: *  Arguments
   46: *  =========
   47: *
   48: *     PREC_TYPE      (input) INTEGER
   49: *     Specifies the intermediate precision to be used in refinement.
   50: *     The value is defined by ILAPREC(P) where P is a CHARACTER and
   51: *     P    = 'S':  Single
   52: *          = 'D':  Double
   53: *          = 'I':  Indigenous
   54: *          = 'X', 'E':  Extra
   55: *
   56: *     TRANS_TYPE     (input) INTEGER
   57: *     Specifies the transposition operation on A.
   58: *     The value is defined by ILATRANS(T) where T is a CHARACTER and
   59: *     T    = 'N':  No transpose
   60: *          = 'T':  Transpose
   61: *          = 'C':  Conjugate transpose
   62: *
   63: *     N              (input) INTEGER
   64: *     The number of linear equations, i.e., the order of the
   65: *     matrix A.  N >= 0.
   66: *
   67: *     NRHS           (input) INTEGER
   68: *     The number of right-hand-sides, i.e., the number of columns of the
   69: *     matrix B.
   70: *
   71: *     A              (input) DOUBLE PRECISION array, dimension (LDA,N)
   72: *     On entry, the N-by-N matrix A.
   73: *
   74: *     LDA            (input) INTEGER
   75: *     The leading dimension of the array A.  LDA >= max(1,N).
   76: *
   77: *     AF             (input) DOUBLE PRECISION array, dimension (LDAF,N)
   78: *     The factors L and U from the factorization
   79: *     A = P*L*U as computed by DGETRF.
   80: *
   81: *     LDAF           (input) INTEGER
   82: *     The leading dimension of the array AF.  LDAF >= max(1,N).
   83: *
   84: *     IPIV           (input) INTEGER array, dimension (N)
   85: *     The pivot indices from the factorization A = P*L*U
   86: *     as computed by DGETRF; row i of the matrix was interchanged
   87: *     with row IPIV(i).
   88: *
   89: *     COLEQU         (input) LOGICAL
   90: *     If .TRUE. then column equilibration was done to A before calling
   91: *     this routine. This is needed to compute the solution and error
   92: *     bounds correctly.
   93: *
   94: *     C              (input) DOUBLE PRECISION  array, dimension (N)
   95: *     The column scale factors for A. If COLEQU = .FALSE., C
   96: *     is not accessed. If C is input, each element of C should be a power
   97: *     of the radix to ensure a reliable solution and error estimates.
   98: *     Scaling by powers of the radix does not cause rounding errors unless
   99: *     the result underflows or overflows. Rounding errors during scaling
  100: *     lead to refining with a matrix that is not equivalent to the
  101: *     input matrix, producing error estimates that may not be
  102: *     reliable.
  103: *
  104: *     B              (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
  105: *     The right-hand-side matrix B.
  106: *
  107: *     LDB            (input) INTEGER
  108: *     The leading dimension of the array B.  LDB >= max(1,N).
  109: *
  110: *     Y              (input/output) DOUBLE PRECISION array, dimension
  111: *                    (LDY,NRHS)
  112: *     On entry, the solution matrix X, as computed by DGETRS.
  113: *     On exit, the improved solution matrix Y.
  114: *
  115: *     LDY            (input) INTEGER
  116: *     The leading dimension of the array Y.  LDY >= max(1,N).
  117: *
  118: *     BERR_OUT       (output) DOUBLE PRECISION array, dimension (NRHS)
  119: *     On exit, BERR_OUT(j) contains the componentwise relative backward
  120: *     error for right-hand-side j from the formula
  121: *         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  122: *     where abs(Z) is the componentwise absolute value of the matrix
  123: *     or vector Z. This is computed by DLA_LIN_BERR.
  124: *
  125: *     N_NORMS        (input) INTEGER
  126: *     Determines which error bounds to return (see ERR_BNDS_NORM
  127: *     and ERR_BNDS_COMP).
  128: *     If N_NORMS >= 1 return normwise error bounds.
  129: *     If N_NORMS >= 2 return componentwise error bounds.
  130: *
  131: *     ERR_BNDS_NORM  (input/output) DOUBLE PRECISION array, dimension
  132: *                    (NRHS, N_ERR_BNDS)
  133: *     For each right-hand side, this array contains information about
  134: *     various error bounds and condition numbers corresponding to the
  135: *     normwise relative error, which is defined as follows:
  136: *
  137: *     Normwise relative error in the ith solution vector:
  138: *             max_j (abs(XTRUE(j,i) - X(j,i)))
  139: *            ------------------------------
  140: *                  max_j abs(X(j,i))
  141: *
  142: *     The array is indexed by the type of error information as described
  143: *     below. There currently are up to three pieces of information
  144: *     returned.
  145: *
  146: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  147: *     right-hand side.
  148: *
  149: *     The second index in ERR_BNDS_NORM(:,err) contains the following
  150: *     three fields:
  151: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  152: *              reciprocal condition number is less than the threshold
  153: *              sqrt(n) * slamch('Epsilon').
  154: *
  155: *     err = 2 "Guaranteed" error bound: The estimated forward error,
  156: *              almost certainly within a factor of 10 of the true error
  157: *              so long as the next entry is greater than the threshold
  158: *              sqrt(n) * slamch('Epsilon'). This error bound should only
  159: *              be trusted if the previous boolean is true.
  160: *
  161: *     err = 3  Reciprocal condition number: Estimated normwise
  162: *              reciprocal condition number.  Compared with the threshold
  163: *              sqrt(n) * slamch('Epsilon') to determine if the error
  164: *              estimate is "guaranteed". These reciprocal condition
  165: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  166: *              appropriately scaled matrix Z.
  167: *              Let Z = S*A, where S scales each row by a power of the
  168: *              radix so all absolute row sums of Z are approximately 1.
  169: *
  170: *     This subroutine is only responsible for setting the second field
  171: *     above.
  172: *     See Lapack Working Note 165 for further details and extra
  173: *     cautions.
  174: *
  175: *     ERR_BNDS_COMP  (input/output) DOUBLE PRECISION array, dimension
  176: *                    (NRHS, N_ERR_BNDS)
  177: *     For each right-hand side, this array contains information about
  178: *     various error bounds and condition numbers corresponding to the
  179: *     componentwise relative error, which is defined as follows:
  180: *
  181: *     Componentwise relative error in the ith solution vector:
  182: *                    abs(XTRUE(j,i) - X(j,i))
  183: *             max_j ----------------------
  184: *                         abs(X(j,i))
  185: *
  186: *     The array is indexed by the right-hand side i (on which the
  187: *     componentwise relative error depends), and the type of error
  188: *     information as described below. There currently are up to three
  189: *     pieces of information returned for each right-hand side. If
  190: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  191: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  192: *     the first (:,N_ERR_BNDS) entries are returned.
  193: *
  194: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  195: *     right-hand side.
  196: *
  197: *     The second index in ERR_BNDS_COMP(:,err) contains the following
  198: *     three fields:
  199: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  200: *              reciprocal condition number is less than the threshold
  201: *              sqrt(n) * slamch('Epsilon').
  202: *
  203: *     err = 2 "Guaranteed" error bound: The estimated forward error,
  204: *              almost certainly within a factor of 10 of the true error
  205: *              so long as the next entry is greater than the threshold
  206: *              sqrt(n) * slamch('Epsilon'). This error bound should only
  207: *              be trusted if the previous boolean is true.
  208: *
  209: *     err = 3  Reciprocal condition number: Estimated componentwise
  210: *              reciprocal condition number.  Compared with the threshold
  211: *              sqrt(n) * slamch('Epsilon') to determine if the error
  212: *              estimate is "guaranteed". These reciprocal condition
  213: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  214: *              appropriately scaled matrix Z.
  215: *              Let Z = S*(A*diag(x)), where x is the solution for the
  216: *              current right-hand side and S scales each row of
  217: *              A*diag(x) by a power of the radix so all absolute row
  218: *              sums of Z are approximately 1.
  219: *
  220: *     This subroutine is only responsible for setting the second field
  221: *     above.
  222: *     See Lapack Working Note 165 for further details and extra
  223: *     cautions.
  224: *
  225: *     RES            (input) DOUBLE PRECISION array, dimension (N)
  226: *     Workspace to hold the intermediate residual.
  227: *
  228: *     AYB            (input) DOUBLE PRECISION array, dimension (N)
  229: *     Workspace. This can be the same workspace passed for Y_TAIL.
  230: *
  231: *     DY             (input) DOUBLE PRECISION array, dimension (N)
  232: *     Workspace to hold the intermediate solution.
  233: *
  234: *     Y_TAIL         (input) DOUBLE PRECISION array, dimension (N)
  235: *     Workspace to hold the trailing bits of the intermediate solution.
  236: *
  237: *     RCOND          (input) DOUBLE PRECISION
  238: *     Reciprocal scaled condition number.  This is an estimate of the
  239: *     reciprocal Skeel condition number of the matrix A after
  240: *     equilibration (if done).  If this is less than the machine
  241: *     precision (in particular, if it is zero), the matrix is singular
  242: *     to working precision.  Note that the error may still be small even
  243: *     if this number is very small and the matrix appears ill-
  244: *     conditioned.
  245: *
  246: *     ITHRESH        (input) INTEGER
  247: *     The maximum number of residual computations allowed for
  248: *     refinement. The default is 10. For 'aggressive' set to 100 to
  249: *     permit convergence using approximate factorizations or
  250: *     factorizations other than LU. If the factorization uses a
  251: *     technique other than Gaussian elimination, the guarantees in
  252: *     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
  253: *
  254: *     RTHRESH        (input) DOUBLE PRECISION
  255: *     Determines when to stop refinement if the error estimate stops
  256: *     decreasing. Refinement will stop when the next solution no longer
  257: *     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  258: *     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  259: *     default value is 0.5. For 'aggressive' set to 0.9 to permit
  260: *     convergence on extremely ill-conditioned matrices. See LAWN 165
  261: *     for more details.
  262: *
  263: *     DZ_UB          (input) DOUBLE PRECISION
  264: *     Determines when to start considering componentwise convergence.
  265: *     Componentwise convergence is only considered after each component
  266: *     of the solution Y is stable, which we definte as the relative
  267: *     change in each component being less than DZ_UB. The default value
  268: *     is 0.25, requiring the first bit to be stable. See LAWN 165 for
  269: *     more details.
  270: *
  271: *     IGNORE_CWISE   (input) LOGICAL
  272: *     If .TRUE. then ignore componentwise convergence. Default value
  273: *     is .FALSE..
  274: *
  275: *     INFO           (output) INTEGER
  276: *       = 0:  Successful exit.
  277: *       < 0:  if INFO = -i, the ith argument to DGETRS had an illegal
  278: *             value
  279: *
  280: *  =====================================================================
  281: *
  282: *     .. Local Scalars ..
  283:       CHARACTER          TRANS
  284:       INTEGER            CNT, I, J, X_STATE, Z_STATE, Y_PREC_STATE
  285:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  286:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  287:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  288:      $                   EPS, HUGEVAL, INCR_THRESH
  289:       LOGICAL            INCR_PREC
  290: *     ..
  291: *     .. Parameters ..
  292:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  293:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
  294:      $                   EXTRA_Y
  295:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  296:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
  297:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  298:      $                   EXTRA_Y = 2 )
  299:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  300:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  301:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  302:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  303:      $                   BERR_I = 3 )
  304:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  305:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  306:      $                   PIV_GROWTH_I = 9 )
  307:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  308:      $                   LA_LINRX_CWISE_I
  309:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  310:      $                   LA_LINRX_ITHRESH_I = 2 )
  311:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  312:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  313:      $                   LA_LINRX_RCOND_I
  314:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  315:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  316: *     ..
  317: *     .. External Subroutines ..
  318:       EXTERNAL           DAXPY, DCOPY, DGETRS, DGEMV, BLAS_DGEMV_X,
  319:      $                   BLAS_DGEMV2_X, DLA_GEAMV, DLA_WWADDW, DLAMCH,
  320:      $                   CHLA_TRANSTYPE, DLA_LIN_BERR
  321:       DOUBLE PRECISION   DLAMCH
  322:       CHARACTER          CHLA_TRANSTYPE
  323: *     ..
  324: *     .. Intrinsic Functions ..
  325:       INTRINSIC          ABS, MAX, MIN
  326: *     ..
  327: *     .. Executable Statements ..
  328: *
  329:       IF ( INFO.NE.0 ) RETURN
  330:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
  331:       EPS = DLAMCH( 'Epsilon' )
  332:       HUGEVAL = DLAMCH( 'Overflow' )
  333: *     Force HUGEVAL to Inf
  334:       HUGEVAL = HUGEVAL * HUGEVAL
  335: *     Using HUGEVAL may lead to spurious underflows.
  336:       INCR_THRESH = DBLE( N ) * EPS
  337: *
  338:       DO J = 1, NRHS
  339:          Y_PREC_STATE = EXTRA_RESIDUAL
  340:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  341:             DO I = 1, N
  342:                Y_TAIL( I ) = 0.0D+0
  343:             END DO
  344:          END IF
  345: 
  346:          DXRAT = 0.0D+0
  347:          DXRATMAX = 0.0D+0
  348:          DZRAT = 0.0D+0
  349:          DZRATMAX = 0.0D+0
  350:          FINAL_DX_X = HUGEVAL
  351:          FINAL_DZ_Z = HUGEVAL
  352:          PREVNORMDX = HUGEVAL
  353:          PREV_DZ_Z = HUGEVAL
  354:          DZ_Z = HUGEVAL
  355:          DX_X = HUGEVAL
  356: 
  357:          X_STATE = WORKING_STATE
  358:          Z_STATE = UNSTABLE_STATE
  359:          INCR_PREC = .FALSE.
  360: 
  361:          DO CNT = 1, ITHRESH
  362: *
  363: *         Compute residual RES = B_s - op(A_s) * Y,
  364: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
  365: *
  366:             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  367:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
  368:                CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y( 1, J ), 1,
  369:      $              1.0D+0, RES, 1 )
  370:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
  371:                CALL BLAS_DGEMV_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
  372:      $              Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
  373:             ELSE
  374:                CALL BLAS_DGEMV2_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
  375:      $              Y( 1, J ), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE )
  376:             END IF
  377: 
  378: !        XXX: RES is no longer needed.
  379:             CALL DCOPY( N, RES, 1, DY, 1 )
  380:             CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, DY, N, INFO )
  381: *
  382: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  383: *
  384:             NORMX = 0.0D+0
  385:             NORMY = 0.0D+0
  386:             NORMDX = 0.0D+0
  387:             DZ_Z = 0.0D+0
  388:             YMIN = HUGEVAL
  389: *
  390:             DO I = 1, N
  391:                YK = ABS( Y( I, J ) )
  392:                DYK = ABS( DY( I ) )
  393: 
  394:                IF ( YK .NE. 0.0D+0 ) THEN
  395:                   DZ_Z = MAX( DZ_Z, DYK / YK )
  396:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  397:                   DZ_Z = HUGEVAL
  398:                END IF
  399: 
  400:                YMIN = MIN( YMIN, YK )
  401: 
  402:                NORMY = MAX( NORMY, YK )
  403: 
  404:                IF ( COLEQU ) THEN
  405:                   NORMX = MAX( NORMX, YK * C( I ) )
  406:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
  407:                ELSE
  408:                   NORMX = NORMY
  409:                   NORMDX = MAX( NORMDX, DYK )
  410:                END IF
  411:             END DO
  412: 
  413:             IF ( NORMX .NE. 0.0D+0 ) THEN
  414:                DX_X = NORMDX / NORMX
  415:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  416:                DX_X = 0.0D+0
  417:             ELSE
  418:                DX_X = HUGEVAL
  419:             END IF
  420: 
  421:             DXRAT = NORMDX / PREVNORMDX
  422:             DZRAT = DZ_Z / PREV_DZ_Z
  423: *
  424: *         Check termination criteria
  425: *
  426:             IF (.NOT.IGNORE_CWISE
  427:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
  428:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y)
  429:      $           INCR_PREC = .TRUE.
  430: 
  431:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  432:      $           X_STATE = WORKING_STATE
  433:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
  434:                IF ( DX_X .LE. EPS ) THEN
  435:                   X_STATE = CONV_STATE
  436:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  437:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  438:                      INCR_PREC = .TRUE.
  439:                   ELSE
  440:                      X_STATE = NOPROG_STATE
  441:                   END IF
  442:                ELSE
  443:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  444:                END IF
  445:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  446:             END IF
  447: 
  448:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  449:      $           Z_STATE = WORKING_STATE
  450:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  451:      $           Z_STATE = WORKING_STATE
  452:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  453:                IF ( DZ_Z .LE. EPS ) THEN
  454:                   Z_STATE = CONV_STATE
  455:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  456:                   Z_STATE = UNSTABLE_STATE
  457:                   DZRATMAX = 0.0D+0
  458:                   FINAL_DZ_Z = HUGEVAL
  459:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  460:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  461:                      INCR_PREC = .TRUE.
  462:                   ELSE
  463:                      Z_STATE = NOPROG_STATE
  464:                   END IF
  465:                ELSE
  466:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  467:                END IF
  468:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  469:             END IF
  470: *
  471: *           Exit if both normwise and componentwise stopped working,
  472: *           but if componentwise is unstable, let it go at least two
  473: *           iterations.
  474: *
  475:             IF ( X_STATE.NE.WORKING_STATE ) THEN
  476:                IF ( IGNORE_CWISE) GOTO 666
  477:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
  478:      $              GOTO 666
  479:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
  480:             END IF
  481: 
  482:             IF ( INCR_PREC ) THEN
  483:                INCR_PREC = .FALSE.
  484:                Y_PREC_STATE = Y_PREC_STATE + 1
  485:                DO I = 1, N
  486:                   Y_TAIL( I ) = 0.0D+0
  487:                END DO
  488:             END IF
  489: 
  490:             PREVNORMDX = NORMDX
  491:             PREV_DZ_Z = DZ_Z
  492: *
  493: *           Update soluton.
  494: *
  495:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
  496:                CALL DAXPY( N, 1.0D+0, DY, 1, Y( 1, J ), 1 )
  497:             ELSE
  498:                CALL DLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
  499:             END IF
  500: 
  501:          END DO
  502: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
  503:  666     CONTINUE
  504: *
  505: *     Set final_* when cnt hits ithresh.
  506: *
  507:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  508:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  509: *
  510: *     Compute error bounds
  511: *
  512:          IF (N_NORMS .GE. 1) THEN
  513:             ERRS_N( J, LA_LINRX_ERR_I ) = FINAL_DX_X / (1 - DXRATMAX)
  514:          END IF
  515:          IF ( N_NORMS .GE. 2 ) THEN
  516:             ERRS_C( J, LA_LINRX_ERR_I ) = FINAL_DZ_Z / (1 - DZRATMAX)
  517:          END IF
  518: *
  519: *     Compute componentwise relative backward error from formula
  520: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  521: *     where abs(Z) is the componentwise absolute value of the matrix
  522: *     or vector Z.
  523: *
  524: *         Compute residual RES = B_s - op(A_s) * Y,
  525: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
  526: *
  527:          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  528:          CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0, 
  529:      $     RES, 1 )
  530: 
  531:          DO I = 1, N
  532:             AYB( I ) = ABS( B( I, J ) )
  533:          END DO
  534: *
  535: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
  536: *
  537:          CALL DLA_GEAMV ( TRANS_TYPE, N, N, 1.0D+0,
  538:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
  539: 
  540:          CALL DLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
  541: *
  542: *     End of loop for each RHS.
  543: *
  544:       END DO
  545: *
  546:       RETURN
  547:       END

CVSweb interface <joel.bertrand@systella.fr>