File:  [local] / rpl / lapack / lapack / dla_gerfsx_extended.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:45:57 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DLA_GERFSX_EXTENDED improves the computed solution to a system of linear equations for general matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLA_GERFSX_EXTENDED + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gerfsx_extended.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gerfsx_extended.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gerfsx_extended.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
   22: *                                       LDA, AF, LDAF, IPIV, COLEQU, C, B,
   23: *                                       LDB, Y, LDY, BERR_OUT, N_NORMS,
   24: *                                       ERRS_N, ERRS_C, RES, AYB, DY,
   25: *                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
   26: *                                       DZ_UB, IGNORE_CWISE, INFO )
   27: *
   28: *       .. Scalar Arguments ..
   29: *       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
   30: *      $                   TRANS_TYPE, N_NORMS, ITHRESH
   31: *       LOGICAL            COLEQU, IGNORE_CWISE
   32: *       DOUBLE PRECISION   RTHRESH, DZ_UB
   33: *       ..
   34: *       .. Array Arguments ..
   35: *       INTEGER            IPIV( * )
   36: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   37: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
   38: *       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
   39: *      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
   40: *       ..
   41: *
   42: *
   43: *> \par Purpose:
   44: *  =============
   45: *>
   46: *> \verbatim
   47: *>
   48: *>
   49: *> DLA_GERFSX_EXTENDED improves the computed solution to a system of
   50: *> linear equations by performing extra-precise iterative refinement
   51: *> and provides error bounds and backward error estimates for the solution.
   52: *> This subroutine is called by DGERFSX to perform iterative refinement.
   53: *> In addition to normwise error bound, the code provides maximum
   54: *> componentwise error bound if possible. See comments for ERRS_N
   55: *> and ERRS_C for details of the error bounds. Note that this
   56: *> subroutine is only resonsible for setting the second fields of
   57: *> ERRS_N and ERRS_C.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \param[in] PREC_TYPE
   64: *> \verbatim
   65: *>          PREC_TYPE is INTEGER
   66: *>     Specifies the intermediate precision to be used in refinement.
   67: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and P
   68: *>          = 'S':  Single
   69: *>          = 'D':  Double
   70: *>          = 'I':  Indigenous
   71: *>          = 'X' or 'E':  Extra
   72: *> \endverbatim
   73: *>
   74: *> \param[in] TRANS_TYPE
   75: *> \verbatim
   76: *>          TRANS_TYPE is INTEGER
   77: *>     Specifies the transposition operation on A.
   78: *>     The value is defined by ILATRANS(T) where T is a CHARACTER and T
   79: *>          = 'N':  No transpose
   80: *>          = 'T':  Transpose
   81: *>          = 'C':  Conjugate transpose
   82: *> \endverbatim
   83: *>
   84: *> \param[in] N
   85: *> \verbatim
   86: *>          N is INTEGER
   87: *>     The number of linear equations, i.e., the order of the
   88: *>     matrix A.  N >= 0.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] NRHS
   92: *> \verbatim
   93: *>          NRHS is INTEGER
   94: *>     The number of right-hand-sides, i.e., the number of columns of the
   95: *>     matrix B.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] A
   99: *> \verbatim
  100: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  101: *>     On entry, the N-by-N matrix A.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] LDA
  105: *> \verbatim
  106: *>          LDA is INTEGER
  107: *>     The leading dimension of the array A.  LDA >= max(1,N).
  108: *> \endverbatim
  109: *>
  110: *> \param[in] AF
  111: *> \verbatim
  112: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
  113: *>     The factors L and U from the factorization
  114: *>     A = P*L*U as computed by DGETRF.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] LDAF
  118: *> \verbatim
  119: *>          LDAF is INTEGER
  120: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  121: *> \endverbatim
  122: *>
  123: *> \param[in] IPIV
  124: *> \verbatim
  125: *>          IPIV is INTEGER array, dimension (N)
  126: *>     The pivot indices from the factorization A = P*L*U
  127: *>     as computed by DGETRF; row i of the matrix was interchanged
  128: *>     with row IPIV(i).
  129: *> \endverbatim
  130: *>
  131: *> \param[in] COLEQU
  132: *> \verbatim
  133: *>          COLEQU is LOGICAL
  134: *>     If .TRUE. then column equilibration was done to A before calling
  135: *>     this routine. This is needed to compute the solution and error
  136: *>     bounds correctly.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] C
  140: *> \verbatim
  141: *>          C is DOUBLE PRECISION array, dimension (N)
  142: *>     The column scale factors for A. If COLEQU = .FALSE., C
  143: *>     is not accessed. If C is input, each element of C should be a power
  144: *>     of the radix to ensure a reliable solution and error estimates.
  145: *>     Scaling by powers of the radix does not cause rounding errors unless
  146: *>     the result underflows or overflows. Rounding errors during scaling
  147: *>     lead to refining with a matrix that is not equivalent to the
  148: *>     input matrix, producing error estimates that may not be
  149: *>     reliable.
  150: *> \endverbatim
  151: *>
  152: *> \param[in] B
  153: *> \verbatim
  154: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  155: *>     The right-hand-side matrix B.
  156: *> \endverbatim
  157: *>
  158: *> \param[in] LDB
  159: *> \verbatim
  160: *>          LDB is INTEGER
  161: *>     The leading dimension of the array B.  LDB >= max(1,N).
  162: *> \endverbatim
  163: *>
  164: *> \param[in,out] Y
  165: *> \verbatim
  166: *>          Y is DOUBLE PRECISION array, dimension (LDY,NRHS)
  167: *>     On entry, the solution matrix X, as computed by DGETRS.
  168: *>     On exit, the improved solution matrix Y.
  169: *> \endverbatim
  170: *>
  171: *> \param[in] LDY
  172: *> \verbatim
  173: *>          LDY is INTEGER
  174: *>     The leading dimension of the array Y.  LDY >= max(1,N).
  175: *> \endverbatim
  176: *>
  177: *> \param[out] BERR_OUT
  178: *> \verbatim
  179: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
  180: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
  181: *>     error for right-hand-side j from the formula
  182: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  183: *>     where abs(Z) is the componentwise absolute value of the matrix
  184: *>     or vector Z. This is computed by DLA_LIN_BERR.
  185: *> \endverbatim
  186: *>
  187: *> \param[in] N_NORMS
  188: *> \verbatim
  189: *>          N_NORMS is INTEGER
  190: *>     Determines which error bounds to return (see ERRS_N
  191: *>     and ERRS_C).
  192: *>     If N_NORMS >= 1 return normwise error bounds.
  193: *>     If N_NORMS >= 2 return componentwise error bounds.
  194: *> \endverbatim
  195: *>
  196: *> \param[in,out] ERRS_N
  197: *> \verbatim
  198: *>          ERRS_N is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  199: *>     For each right-hand side, this array contains information about
  200: *>     various error bounds and condition numbers corresponding to the
  201: *>     normwise relative error, which is defined as follows:
  202: *>
  203: *>     Normwise relative error in the ith solution vector:
  204: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  205: *>            ------------------------------
  206: *>                  max_j abs(X(j,i))
  207: *>
  208: *>     The array is indexed by the type of error information as described
  209: *>     below. There currently are up to three pieces of information
  210: *>     returned.
  211: *>
  212: *>     The first index in ERRS_N(i,:) corresponds to the ith
  213: *>     right-hand side.
  214: *>
  215: *>     The second index in ERRS_N(:,err) contains the following
  216: *>     three fields:
  217: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  218: *>              reciprocal condition number is less than the threshold
  219: *>              sqrt(n) * slamch('Epsilon').
  220: *>
  221: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  222: *>              almost certainly within a factor of 10 of the true error
  223: *>              so long as the next entry is greater than the threshold
  224: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  225: *>              be trusted if the previous boolean is true.
  226: *>
  227: *>     err = 3  Reciprocal condition number: Estimated normwise
  228: *>              reciprocal condition number.  Compared with the threshold
  229: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  230: *>              estimate is "guaranteed". These reciprocal condition
  231: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  232: *>              appropriately scaled matrix Z.
  233: *>              Let Z = S*A, where S scales each row by a power of the
  234: *>              radix so all absolute row sums of Z are approximately 1.
  235: *>
  236: *>     This subroutine is only responsible for setting the second field
  237: *>     above.
  238: *>     See Lapack Working Note 165 for further details and extra
  239: *>     cautions.
  240: *> \endverbatim
  241: *>
  242: *> \param[in,out] ERRS_C
  243: *> \verbatim
  244: *>          ERRS_C is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  245: *>     For each right-hand side, this array contains information about
  246: *>     various error bounds and condition numbers corresponding to the
  247: *>     componentwise relative error, which is defined as follows:
  248: *>
  249: *>     Componentwise relative error in the ith solution vector:
  250: *>                    abs(XTRUE(j,i) - X(j,i))
  251: *>             max_j ----------------------
  252: *>                         abs(X(j,i))
  253: *>
  254: *>     The array is indexed by the right-hand side i (on which the
  255: *>     componentwise relative error depends), and the type of error
  256: *>     information as described below. There currently are up to three
  257: *>     pieces of information returned for each right-hand side. If
  258: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  259: *>     ERRS_C is not accessed.  If N_ERR_BNDS < 3, then at most
  260: *>     the first (:,N_ERR_BNDS) entries are returned.
  261: *>
  262: *>     The first index in ERRS_C(i,:) corresponds to the ith
  263: *>     right-hand side.
  264: *>
  265: *>     The second index in ERRS_C(:,err) contains the following
  266: *>     three fields:
  267: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  268: *>              reciprocal condition number is less than the threshold
  269: *>              sqrt(n) * slamch('Epsilon').
  270: *>
  271: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  272: *>              almost certainly within a factor of 10 of the true error
  273: *>              so long as the next entry is greater than the threshold
  274: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  275: *>              be trusted if the previous boolean is true.
  276: *>
  277: *>     err = 3  Reciprocal condition number: Estimated componentwise
  278: *>              reciprocal condition number.  Compared with the threshold
  279: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  280: *>              estimate is "guaranteed". These reciprocal condition
  281: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  282: *>              appropriately scaled matrix Z.
  283: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  284: *>              current right-hand side and S scales each row of
  285: *>              A*diag(x) by a power of the radix so all absolute row
  286: *>              sums of Z are approximately 1.
  287: *>
  288: *>     This subroutine is only responsible for setting the second field
  289: *>     above.
  290: *>     See Lapack Working Note 165 for further details and extra
  291: *>     cautions.
  292: *> \endverbatim
  293: *>
  294: *> \param[in] RES
  295: *> \verbatim
  296: *>          RES is DOUBLE PRECISION array, dimension (N)
  297: *>     Workspace to hold the intermediate residual.
  298: *> \endverbatim
  299: *>
  300: *> \param[in] AYB
  301: *> \verbatim
  302: *>          AYB is DOUBLE PRECISION array, dimension (N)
  303: *>     Workspace. This can be the same workspace passed for Y_TAIL.
  304: *> \endverbatim
  305: *>
  306: *> \param[in] DY
  307: *> \verbatim
  308: *>          DY is DOUBLE PRECISION array, dimension (N)
  309: *>     Workspace to hold the intermediate solution.
  310: *> \endverbatim
  311: *>
  312: *> \param[in] Y_TAIL
  313: *> \verbatim
  314: *>          Y_TAIL is DOUBLE PRECISION array, dimension (N)
  315: *>     Workspace to hold the trailing bits of the intermediate solution.
  316: *> \endverbatim
  317: *>
  318: *> \param[in] RCOND
  319: *> \verbatim
  320: *>          RCOND is DOUBLE PRECISION
  321: *>     Reciprocal scaled condition number.  This is an estimate of the
  322: *>     reciprocal Skeel condition number of the matrix A after
  323: *>     equilibration (if done).  If this is less than the machine
  324: *>     precision (in particular, if it is zero), the matrix is singular
  325: *>     to working precision.  Note that the error may still be small even
  326: *>     if this number is very small and the matrix appears ill-
  327: *>     conditioned.
  328: *> \endverbatim
  329: *>
  330: *> \param[in] ITHRESH
  331: *> \verbatim
  332: *>          ITHRESH is INTEGER
  333: *>     The maximum number of residual computations allowed for
  334: *>     refinement. The default is 10. For 'aggressive' set to 100 to
  335: *>     permit convergence using approximate factorizations or
  336: *>     factorizations other than LU. If the factorization uses a
  337: *>     technique other than Gaussian elimination, the guarantees in
  338: *>     ERRS_N and ERRS_C may no longer be trustworthy.
  339: *> \endverbatim
  340: *>
  341: *> \param[in] RTHRESH
  342: *> \verbatim
  343: *>          RTHRESH is DOUBLE PRECISION
  344: *>     Determines when to stop refinement if the error estimate stops
  345: *>     decreasing. Refinement will stop when the next solution no longer
  346: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  347: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  348: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
  349: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
  350: *>     for more details.
  351: *> \endverbatim
  352: *>
  353: *> \param[in] DZ_UB
  354: *> \verbatim
  355: *>          DZ_UB is DOUBLE PRECISION
  356: *>     Determines when to start considering componentwise convergence.
  357: *>     Componentwise convergence is only considered after each component
  358: *>     of the solution Y is stable, which we definte as the relative
  359: *>     change in each component being less than DZ_UB. The default value
  360: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
  361: *>     more details.
  362: *> \endverbatim
  363: *>
  364: *> \param[in] IGNORE_CWISE
  365: *> \verbatim
  366: *>          IGNORE_CWISE is LOGICAL
  367: *>     If .TRUE. then ignore componentwise convergence. Default value
  368: *>     is .FALSE..
  369: *> \endverbatim
  370: *>
  371: *> \param[out] INFO
  372: *> \verbatim
  373: *>          INFO is INTEGER
  374: *>       = 0:  Successful exit.
  375: *>       < 0:  if INFO = -i, the ith argument to DGETRS had an illegal
  376: *>             value
  377: *> \endverbatim
  378: *
  379: *  Authors:
  380: *  ========
  381: *
  382: *> \author Univ. of Tennessee
  383: *> \author Univ. of California Berkeley
  384: *> \author Univ. of Colorado Denver
  385: *> \author NAG Ltd.
  386: *
  387: *> \date June 2017
  388: *
  389: *> \ingroup doubleGEcomputational
  390: *
  391: *  =====================================================================
  392:       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
  393:      $                                LDA, AF, LDAF, IPIV, COLEQU, C, B,
  394:      $                                LDB, Y, LDY, BERR_OUT, N_NORMS,
  395:      $                                ERRS_N, ERRS_C, RES, AYB, DY,
  396:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
  397:      $                                DZ_UB, IGNORE_CWISE, INFO )
  398: *
  399: *  -- LAPACK computational routine (version 3.7.1) --
  400: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  401: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  402: *     June 2017
  403: *
  404: *     .. Scalar Arguments ..
  405:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  406:      $                   TRANS_TYPE, N_NORMS, ITHRESH
  407:       LOGICAL            COLEQU, IGNORE_CWISE
  408:       DOUBLE PRECISION   RTHRESH, DZ_UB
  409: *     ..
  410: *     .. Array Arguments ..
  411:       INTEGER            IPIV( * )
  412:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  413:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  414:       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
  415:      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
  416: *     ..
  417: *
  418: *  =====================================================================
  419: *
  420: *     .. Local Scalars ..
  421:       CHARACTER          TRANS
  422:       INTEGER            CNT, I, J, X_STATE, Z_STATE, Y_PREC_STATE
  423:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  424:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  425:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  426:      $                   EPS, HUGEVAL, INCR_THRESH
  427:       LOGICAL            INCR_PREC
  428: *     ..
  429: *     .. Parameters ..
  430:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  431:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
  432:      $                   EXTRA_Y
  433:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  434:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
  435:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  436:      $                   EXTRA_Y = 2 )
  437:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  438:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  439:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  440:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  441:      $                   BERR_I = 3 )
  442:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  443:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  444:      $                   PIV_GROWTH_I = 9 )
  445:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  446:      $                   LA_LINRX_CWISE_I
  447:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  448:      $                   LA_LINRX_ITHRESH_I = 2 )
  449:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  450:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  451:      $                   LA_LINRX_RCOND_I
  452:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  453:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  454: *     ..
  455: *     .. External Subroutines ..
  456:       EXTERNAL           DAXPY, DCOPY, DGETRS, DGEMV, BLAS_DGEMV_X,
  457:      $                   BLAS_DGEMV2_X, DLA_GEAMV, DLA_WWADDW, DLAMCH,
  458:      $                   CHLA_TRANSTYPE, DLA_LIN_BERR
  459:       DOUBLE PRECISION   DLAMCH
  460:       CHARACTER          CHLA_TRANSTYPE
  461: *     ..
  462: *     .. Intrinsic Functions ..
  463:       INTRINSIC          ABS, MAX, MIN
  464: *     ..
  465: *     .. Executable Statements ..
  466: *
  467:       IF ( INFO.NE.0 ) RETURN
  468:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
  469:       EPS = DLAMCH( 'Epsilon' )
  470:       HUGEVAL = DLAMCH( 'Overflow' )
  471: *     Force HUGEVAL to Inf
  472:       HUGEVAL = HUGEVAL * HUGEVAL
  473: *     Using HUGEVAL may lead to spurious underflows.
  474:       INCR_THRESH = DBLE( N ) * EPS
  475: *
  476:       DO J = 1, NRHS
  477:          Y_PREC_STATE = EXTRA_RESIDUAL
  478:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  479:             DO I = 1, N
  480:                Y_TAIL( I ) = 0.0D+0
  481:             END DO
  482:          END IF
  483: 
  484:          DXRAT = 0.0D+0
  485:          DXRATMAX = 0.0D+0
  486:          DZRAT = 0.0D+0
  487:          DZRATMAX = 0.0D+0
  488:          FINAL_DX_X = HUGEVAL
  489:          FINAL_DZ_Z = HUGEVAL
  490:          PREVNORMDX = HUGEVAL
  491:          PREV_DZ_Z = HUGEVAL
  492:          DZ_Z = HUGEVAL
  493:          DX_X = HUGEVAL
  494: 
  495:          X_STATE = WORKING_STATE
  496:          Z_STATE = UNSTABLE_STATE
  497:          INCR_PREC = .FALSE.
  498: 
  499:          DO CNT = 1, ITHRESH
  500: *
  501: *         Compute residual RES = B_s - op(A_s) * Y,
  502: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
  503: *
  504:             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  505:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
  506:                CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y( 1, J ), 1,
  507:      $              1.0D+0, RES, 1 )
  508:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
  509:                CALL BLAS_DGEMV_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
  510:      $              Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
  511:             ELSE
  512:                CALL BLAS_DGEMV2_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
  513:      $              Y( 1, J ), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE )
  514:             END IF
  515: 
  516: !        XXX: RES is no longer needed.
  517:             CALL DCOPY( N, RES, 1, DY, 1 )
  518:             CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, DY, N, INFO )
  519: *
  520: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  521: *
  522:             NORMX = 0.0D+0
  523:             NORMY = 0.0D+0
  524:             NORMDX = 0.0D+0
  525:             DZ_Z = 0.0D+0
  526:             YMIN = HUGEVAL
  527: *
  528:             DO I = 1, N
  529:                YK = ABS( Y( I, J ) )
  530:                DYK = ABS( DY( I ) )
  531: 
  532:                IF ( YK .NE. 0.0D+0 ) THEN
  533:                   DZ_Z = MAX( DZ_Z, DYK / YK )
  534:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  535:                   DZ_Z = HUGEVAL
  536:                END IF
  537: 
  538:                YMIN = MIN( YMIN, YK )
  539: 
  540:                NORMY = MAX( NORMY, YK )
  541: 
  542:                IF ( COLEQU ) THEN
  543:                   NORMX = MAX( NORMX, YK * C( I ) )
  544:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
  545:                ELSE
  546:                   NORMX = NORMY
  547:                   NORMDX = MAX( NORMDX, DYK )
  548:                END IF
  549:             END DO
  550: 
  551:             IF ( NORMX .NE. 0.0D+0 ) THEN
  552:                DX_X = NORMDX / NORMX
  553:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  554:                DX_X = 0.0D+0
  555:             ELSE
  556:                DX_X = HUGEVAL
  557:             END IF
  558: 
  559:             DXRAT = NORMDX / PREVNORMDX
  560:             DZRAT = DZ_Z / PREV_DZ_Z
  561: *
  562: *         Check termination criteria
  563: *
  564:             IF (.NOT.IGNORE_CWISE
  565:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
  566:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y)
  567:      $           INCR_PREC = .TRUE.
  568: 
  569:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  570:      $           X_STATE = WORKING_STATE
  571:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
  572:                IF ( DX_X .LE. EPS ) THEN
  573:                   X_STATE = CONV_STATE
  574:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  575:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  576:                      INCR_PREC = .TRUE.
  577:                   ELSE
  578:                      X_STATE = NOPROG_STATE
  579:                   END IF
  580:                ELSE
  581:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  582:                END IF
  583:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  584:             END IF
  585: 
  586:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  587:      $           Z_STATE = WORKING_STATE
  588:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  589:      $           Z_STATE = WORKING_STATE
  590:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  591:                IF ( DZ_Z .LE. EPS ) THEN
  592:                   Z_STATE = CONV_STATE
  593:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  594:                   Z_STATE = UNSTABLE_STATE
  595:                   DZRATMAX = 0.0D+0
  596:                   FINAL_DZ_Z = HUGEVAL
  597:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  598:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  599:                      INCR_PREC = .TRUE.
  600:                   ELSE
  601:                      Z_STATE = NOPROG_STATE
  602:                   END IF
  603:                ELSE
  604:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  605:                END IF
  606:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  607:             END IF
  608: *
  609: *           Exit if both normwise and componentwise stopped working,
  610: *           but if componentwise is unstable, let it go at least two
  611: *           iterations.
  612: *
  613:             IF ( X_STATE.NE.WORKING_STATE ) THEN
  614:                IF ( IGNORE_CWISE) GOTO 666
  615:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
  616:      $              GOTO 666
  617:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
  618:             END IF
  619: 
  620:             IF ( INCR_PREC ) THEN
  621:                INCR_PREC = .FALSE.
  622:                Y_PREC_STATE = Y_PREC_STATE + 1
  623:                DO I = 1, N
  624:                   Y_TAIL( I ) = 0.0D+0
  625:                END DO
  626:             END IF
  627: 
  628:             PREVNORMDX = NORMDX
  629:             PREV_DZ_Z = DZ_Z
  630: *
  631: *           Update soluton.
  632: *
  633:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
  634:                CALL DAXPY( N, 1.0D+0, DY, 1, Y( 1, J ), 1 )
  635:             ELSE
  636:                CALL DLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
  637:             END IF
  638: 
  639:          END DO
  640: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
  641:  666     CONTINUE
  642: *
  643: *     Set final_* when cnt hits ithresh.
  644: *
  645:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  646:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  647: *
  648: *     Compute error bounds
  649: *
  650:          IF (N_NORMS .GE. 1) THEN
  651:             ERRS_N( J, LA_LINRX_ERR_I ) = FINAL_DX_X / (1 - DXRATMAX)
  652:          END IF
  653:          IF ( N_NORMS .GE. 2 ) THEN
  654:             ERRS_C( J, LA_LINRX_ERR_I ) = FINAL_DZ_Z / (1 - DZRATMAX)
  655:          END IF
  656: *
  657: *     Compute componentwise relative backward error from formula
  658: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  659: *     where abs(Z) is the componentwise absolute value of the matrix
  660: *     or vector Z.
  661: *
  662: *         Compute residual RES = B_s - op(A_s) * Y,
  663: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
  664: *
  665:          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  666:          CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0,
  667:      $     RES, 1 )
  668: 
  669:          DO I = 1, N
  670:             AYB( I ) = ABS( B( I, J ) )
  671:          END DO
  672: *
  673: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
  674: *
  675:          CALL DLA_GEAMV ( TRANS_TYPE, N, N, 1.0D+0,
  676:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
  677: 
  678:          CALL DLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
  679: *
  680: *     End of loop for each RHS.
  681: *
  682:       END DO
  683: *
  684:       RETURN
  685:       END

CVSweb interface <joel.bertrand@systella.fr>