Annotation of rpl/lapack/lapack/dla_gerfsx_extended.f, revision 1.5

1.5     ! bertrand    1: *> \brief \b DLA_GERFSX_EXTENDED
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLA_GERFSX_EXTENDED + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gerfsx_extended.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gerfsx_extended.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gerfsx_extended.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
        !            22: *                                       LDA, AF, LDAF, IPIV, COLEQU, C, B,
        !            23: *                                       LDB, Y, LDY, BERR_OUT, N_NORMS,
        !            24: *                                       ERRS_N, ERRS_C, RES, AYB, DY,
        !            25: *                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
        !            26: *                                       DZ_UB, IGNORE_CWISE, INFO )
        !            27: * 
        !            28: *       .. Scalar Arguments ..
        !            29: *       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
        !            30: *      $                   TRANS_TYPE, N_NORMS, ITHRESH
        !            31: *       LOGICAL            COLEQU, IGNORE_CWISE
        !            32: *       DOUBLE PRECISION   RTHRESH, DZ_UB
        !            33: *       ..
        !            34: *       .. Array Arguments ..
        !            35: *       INTEGER            IPIV( * )
        !            36: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
        !            37: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
        !            38: *       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
        !            39: *      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
        !            40: *       ..
        !            41: *  
        !            42: *
        !            43: *> \par Purpose:
        !            44: *  =============
        !            45: *>
        !            46: *> \verbatim
        !            47: *>
        !            48: *> 
        !            49: *> DLA_GERFSX_EXTENDED improves the computed solution to a system of
        !            50: *> linear equations by performing extra-precise iterative refinement
        !            51: *> and provides error bounds and backward error estimates for the solution.
        !            52: *> This subroutine is called by DGERFSX to perform iterative refinement.
        !            53: *> In addition to normwise error bound, the code provides maximum
        !            54: *> componentwise error bound if possible. See comments for ERRS_N
        !            55: *> and ERRS_C for details of the error bounds. Note that this
        !            56: *> subroutine is only resonsible for setting the second fields of
        !            57: *> ERRS_N and ERRS_C.
        !            58: *> \endverbatim
        !            59: *
        !            60: *  Arguments:
        !            61: *  ==========
        !            62: *
        !            63: *> \param[in] PREC_TYPE
        !            64: *> \verbatim
        !            65: *>          PREC_TYPE is INTEGER
        !            66: *>     Specifies the intermediate precision to be used in refinement.
        !            67: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
        !            68: *>     P    = 'S':  Single
        !            69: *>          = 'D':  Double
        !            70: *>          = 'I':  Indigenous
        !            71: *>          = 'X', 'E':  Extra
        !            72: *> \endverbatim
        !            73: *>
        !            74: *> \param[in] TRANS_TYPE
        !            75: *> \verbatim
        !            76: *>          TRANS_TYPE is INTEGER
        !            77: *>     Specifies the transposition operation on A.
        !            78: *>     The value is defined by ILATRANS(T) where T is a CHARACTER and
        !            79: *>     T    = 'N':  No transpose
        !            80: *>          = 'T':  Transpose
        !            81: *>          = 'C':  Conjugate transpose
        !            82: *> \endverbatim
        !            83: *>
        !            84: *> \param[in] N
        !            85: *> \verbatim
        !            86: *>          N is INTEGER
        !            87: *>     The number of linear equations, i.e., the order of the
        !            88: *>     matrix A.  N >= 0.
        !            89: *> \endverbatim
        !            90: *>
        !            91: *> \param[in] NRHS
        !            92: *> \verbatim
        !            93: *>          NRHS is INTEGER
        !            94: *>     The number of right-hand-sides, i.e., the number of columns of the
        !            95: *>     matrix B.
        !            96: *> \endverbatim
        !            97: *>
        !            98: *> \param[in] A
        !            99: *> \verbatim
        !           100: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
        !           101: *>     On entry, the N-by-N matrix A.
        !           102: *> \endverbatim
        !           103: *>
        !           104: *> \param[in] LDA
        !           105: *> \verbatim
        !           106: *>          LDA is INTEGER
        !           107: *>     The leading dimension of the array A.  LDA >= max(1,N).
        !           108: *> \endverbatim
        !           109: *>
        !           110: *> \param[in] AF
        !           111: *> \verbatim
        !           112: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
        !           113: *>     The factors L and U from the factorization
        !           114: *>     A = P*L*U as computed by DGETRF.
        !           115: *> \endverbatim
        !           116: *>
        !           117: *> \param[in] LDAF
        !           118: *> \verbatim
        !           119: *>          LDAF is INTEGER
        !           120: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
        !           121: *> \endverbatim
        !           122: *>
        !           123: *> \param[in] IPIV
        !           124: *> \verbatim
        !           125: *>          IPIV is INTEGER array, dimension (N)
        !           126: *>     The pivot indices from the factorization A = P*L*U
        !           127: *>     as computed by DGETRF; row i of the matrix was interchanged
        !           128: *>     with row IPIV(i).
        !           129: *> \endverbatim
        !           130: *>
        !           131: *> \param[in] COLEQU
        !           132: *> \verbatim
        !           133: *>          COLEQU is LOGICAL
        !           134: *>     If .TRUE. then column equilibration was done to A before calling
        !           135: *>     this routine. This is needed to compute the solution and error
        !           136: *>     bounds correctly.
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[in] C
        !           140: *> \verbatim
        !           141: *>          C is DOUBLE PRECISION array, dimension (N)
        !           142: *>     The column scale factors for A. If COLEQU = .FALSE., C
        !           143: *>     is not accessed. If C is input, each element of C should be a power
        !           144: *>     of the radix to ensure a reliable solution and error estimates.
        !           145: *>     Scaling by powers of the radix does not cause rounding errors unless
        !           146: *>     the result underflows or overflows. Rounding errors during scaling
        !           147: *>     lead to refining with a matrix that is not equivalent to the
        !           148: *>     input matrix, producing error estimates that may not be
        !           149: *>     reliable.
        !           150: *> \endverbatim
        !           151: *>
        !           152: *> \param[in] B
        !           153: *> \verbatim
        !           154: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           155: *>     The right-hand-side matrix B.
        !           156: *> \endverbatim
        !           157: *>
        !           158: *> \param[in] LDB
        !           159: *> \verbatim
        !           160: *>          LDB is INTEGER
        !           161: *>     The leading dimension of the array B.  LDB >= max(1,N).
        !           162: *> \endverbatim
        !           163: *>
        !           164: *> \param[in,out] Y
        !           165: *> \verbatim
        !           166: *>          Y is DOUBLE PRECISION array, dimension
        !           167: *>                    (LDY,NRHS)
        !           168: *>     On entry, the solution matrix X, as computed by DGETRS.
        !           169: *>     On exit, the improved solution matrix Y.
        !           170: *> \endverbatim
        !           171: *>
        !           172: *> \param[in] LDY
        !           173: *> \verbatim
        !           174: *>          LDY is INTEGER
        !           175: *>     The leading dimension of the array Y.  LDY >= max(1,N).
        !           176: *> \endverbatim
        !           177: *>
        !           178: *> \param[out] BERR_OUT
        !           179: *> \verbatim
        !           180: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
        !           181: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
        !           182: *>     error for right-hand-side j from the formula
        !           183: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
        !           184: *>     where abs(Z) is the componentwise absolute value of the matrix
        !           185: *>     or vector Z. This is computed by DLA_LIN_BERR.
        !           186: *> \endverbatim
        !           187: *>
        !           188: *> \param[in] N_NORMS
        !           189: *> \verbatim
        !           190: *>          N_NORMS is INTEGER
        !           191: *>     Determines which error bounds to return (see ERRS_N
        !           192: *>     and ERRS_C).
        !           193: *>     If N_NORMS >= 1 return normwise error bounds.
        !           194: *>     If N_NORMS >= 2 return componentwise error bounds.
        !           195: *> \endverbatim
        !           196: *>
        !           197: *> \param[in,out] ERRS_N
        !           198: *> \verbatim
        !           199: *>          ERRS_N is DOUBLE PRECISION array, dimension
        !           200: *>                    (NRHS, N_ERR_BNDS)
        !           201: *>     For each right-hand side, this array contains information about
        !           202: *>     various error bounds and condition numbers corresponding to the
        !           203: *>     normwise relative error, which is defined as follows:
        !           204: *>
        !           205: *>     Normwise relative error in the ith solution vector:
        !           206: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
        !           207: *>            ------------------------------
        !           208: *>                  max_j abs(X(j,i))
        !           209: *>
        !           210: *>     The array is indexed by the type of error information as described
        !           211: *>     below. There currently are up to three pieces of information
        !           212: *>     returned.
        !           213: *>
        !           214: *>     The first index in ERRS_N(i,:) corresponds to the ith
        !           215: *>     right-hand side.
        !           216: *>
        !           217: *>     The second index in ERRS_N(:,err) contains the following
        !           218: *>     three fields:
        !           219: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           220: *>              reciprocal condition number is less than the threshold
        !           221: *>              sqrt(n) * slamch('Epsilon').
        !           222: *>
        !           223: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           224: *>              almost certainly within a factor of 10 of the true error
        !           225: *>              so long as the next entry is greater than the threshold
        !           226: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
        !           227: *>              be trusted if the previous boolean is true.
        !           228: *>
        !           229: *>     err = 3  Reciprocal condition number: Estimated normwise
        !           230: *>              reciprocal condition number.  Compared with the threshold
        !           231: *>              sqrt(n) * slamch('Epsilon') to determine if the error
        !           232: *>              estimate is "guaranteed". These reciprocal condition
        !           233: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           234: *>              appropriately scaled matrix Z.
        !           235: *>              Let Z = S*A, where S scales each row by a power of the
        !           236: *>              radix so all absolute row sums of Z are approximately 1.
        !           237: *>
        !           238: *>     This subroutine is only responsible for setting the second field
        !           239: *>     above.
        !           240: *>     See Lapack Working Note 165 for further details and extra
        !           241: *>     cautions.
        !           242: *> \endverbatim
        !           243: *>
        !           244: *> \param[in,out] ERRS_C
        !           245: *> \verbatim
        !           246: *>          ERRS_C is DOUBLE PRECISION array, dimension
        !           247: *>                    (NRHS, N_ERR_BNDS)
        !           248: *>     For each right-hand side, this array contains information about
        !           249: *>     various error bounds and condition numbers corresponding to the
        !           250: *>     componentwise relative error, which is defined as follows:
        !           251: *>
        !           252: *>     Componentwise relative error in the ith solution vector:
        !           253: *>                    abs(XTRUE(j,i) - X(j,i))
        !           254: *>             max_j ----------------------
        !           255: *>                         abs(X(j,i))
        !           256: *>
        !           257: *>     The array is indexed by the right-hand side i (on which the
        !           258: *>     componentwise relative error depends), and the type of error
        !           259: *>     information as described below. There currently are up to three
        !           260: *>     pieces of information returned for each right-hand side. If
        !           261: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
        !           262: *>     ERRS_C is not accessed.  If N_ERR_BNDS .LT. 3, then at most
        !           263: *>     the first (:,N_ERR_BNDS) entries are returned.
        !           264: *>
        !           265: *>     The first index in ERRS_C(i,:) corresponds to the ith
        !           266: *>     right-hand side.
        !           267: *>
        !           268: *>     The second index in ERRS_C(:,err) contains the following
        !           269: *>     three fields:
        !           270: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           271: *>              reciprocal condition number is less than the threshold
        !           272: *>              sqrt(n) * slamch('Epsilon').
        !           273: *>
        !           274: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           275: *>              almost certainly within a factor of 10 of the true error
        !           276: *>              so long as the next entry is greater than the threshold
        !           277: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
        !           278: *>              be trusted if the previous boolean is true.
        !           279: *>
        !           280: *>     err = 3  Reciprocal condition number: Estimated componentwise
        !           281: *>              reciprocal condition number.  Compared with the threshold
        !           282: *>              sqrt(n) * slamch('Epsilon') to determine if the error
        !           283: *>              estimate is "guaranteed". These reciprocal condition
        !           284: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           285: *>              appropriately scaled matrix Z.
        !           286: *>              Let Z = S*(A*diag(x)), where x is the solution for the
        !           287: *>              current right-hand side and S scales each row of
        !           288: *>              A*diag(x) by a power of the radix so all absolute row
        !           289: *>              sums of Z are approximately 1.
        !           290: *>
        !           291: *>     This subroutine is only responsible for setting the second field
        !           292: *>     above.
        !           293: *>     See Lapack Working Note 165 for further details and extra
        !           294: *>     cautions.
        !           295: *> \endverbatim
        !           296: *>
        !           297: *> \param[in] RES
        !           298: *> \verbatim
        !           299: *>          RES is DOUBLE PRECISION array, dimension (N)
        !           300: *>     Workspace to hold the intermediate residual.
        !           301: *> \endverbatim
        !           302: *>
        !           303: *> \param[in] AYB
        !           304: *> \verbatim
        !           305: *>          AYB is DOUBLE PRECISION array, dimension (N)
        !           306: *>     Workspace. This can be the same workspace passed for Y_TAIL.
        !           307: *> \endverbatim
        !           308: *>
        !           309: *> \param[in] DY
        !           310: *> \verbatim
        !           311: *>          DY is DOUBLE PRECISION array, dimension (N)
        !           312: *>     Workspace to hold the intermediate solution.
        !           313: *> \endverbatim
        !           314: *>
        !           315: *> \param[in] Y_TAIL
        !           316: *> \verbatim
        !           317: *>          Y_TAIL is DOUBLE PRECISION array, dimension (N)
        !           318: *>     Workspace to hold the trailing bits of the intermediate solution.
        !           319: *> \endverbatim
        !           320: *>
        !           321: *> \param[in] RCOND
        !           322: *> \verbatim
        !           323: *>          RCOND is DOUBLE PRECISION
        !           324: *>     Reciprocal scaled condition number.  This is an estimate of the
        !           325: *>     reciprocal Skeel condition number of the matrix A after
        !           326: *>     equilibration (if done).  If this is less than the machine
        !           327: *>     precision (in particular, if it is zero), the matrix is singular
        !           328: *>     to working precision.  Note that the error may still be small even
        !           329: *>     if this number is very small and the matrix appears ill-
        !           330: *>     conditioned.
        !           331: *> \endverbatim
        !           332: *>
        !           333: *> \param[in] ITHRESH
        !           334: *> \verbatim
        !           335: *>          ITHRESH is INTEGER
        !           336: *>     The maximum number of residual computations allowed for
        !           337: *>     refinement. The default is 10. For 'aggressive' set to 100 to
        !           338: *>     permit convergence using approximate factorizations or
        !           339: *>     factorizations other than LU. If the factorization uses a
        !           340: *>     technique other than Gaussian elimination, the guarantees in
        !           341: *>     ERRS_N and ERRS_C may no longer be trustworthy.
        !           342: *> \endverbatim
        !           343: *>
        !           344: *> \param[in] RTHRESH
        !           345: *> \verbatim
        !           346: *>          RTHRESH is DOUBLE PRECISION
        !           347: *>     Determines when to stop refinement if the error estimate stops
        !           348: *>     decreasing. Refinement will stop when the next solution no longer
        !           349: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
        !           350: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
        !           351: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
        !           352: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
        !           353: *>     for more details.
        !           354: *> \endverbatim
        !           355: *>
        !           356: *> \param[in] DZ_UB
        !           357: *> \verbatim
        !           358: *>          DZ_UB is DOUBLE PRECISION
        !           359: *>     Determines when to start considering componentwise convergence.
        !           360: *>     Componentwise convergence is only considered after each component
        !           361: *>     of the solution Y is stable, which we definte as the relative
        !           362: *>     change in each component being less than DZ_UB. The default value
        !           363: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
        !           364: *>     more details.
        !           365: *> \endverbatim
        !           366: *>
        !           367: *> \param[in] IGNORE_CWISE
        !           368: *> \verbatim
        !           369: *>          IGNORE_CWISE is LOGICAL
        !           370: *>     If .TRUE. then ignore componentwise convergence. Default value
        !           371: *>     is .FALSE..
        !           372: *> \endverbatim
        !           373: *>
        !           374: *> \param[out] INFO
        !           375: *> \verbatim
        !           376: *>          INFO is INTEGER
        !           377: *>       = 0:  Successful exit.
        !           378: *>       < 0:  if INFO = -i, the ith argument to DGETRS had an illegal
        !           379: *>             value
        !           380: *> \endverbatim
        !           381: *
        !           382: *  Authors:
        !           383: *  ========
        !           384: *
        !           385: *> \author Univ. of Tennessee 
        !           386: *> \author Univ. of California Berkeley 
        !           387: *> \author Univ. of Colorado Denver 
        !           388: *> \author NAG Ltd. 
        !           389: *
        !           390: *> \date November 2011
        !           391: *
        !           392: *> \ingroup doubleGEcomputational
        !           393: *
        !           394: *  =====================================================================
1.1       bertrand  395:       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
                    396:      $                                LDA, AF, LDAF, IPIV, COLEQU, C, B,
                    397:      $                                LDB, Y, LDY, BERR_OUT, N_NORMS,
                    398:      $                                ERRS_N, ERRS_C, RES, AYB, DY,
                    399:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
                    400:      $                                DZ_UB, IGNORE_CWISE, INFO )
                    401: *
1.5     ! bertrand  402: *  -- LAPACK computational routine (version 3.4.0) --
        !           403: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           404: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           405: *     November 2011
1.1       bertrand  406: *
                    407: *     .. Scalar Arguments ..
                    408:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
                    409:      $                   TRANS_TYPE, N_NORMS, ITHRESH
                    410:       LOGICAL            COLEQU, IGNORE_CWISE
                    411:       DOUBLE PRECISION   RTHRESH, DZ_UB
                    412: *     ..
                    413: *     .. Array Arguments ..
                    414:       INTEGER            IPIV( * )
                    415:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    416:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
                    417:       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
                    418:      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
                    419: *     ..
                    420: *
                    421: *  =====================================================================
                    422: *
                    423: *     .. Local Scalars ..
                    424:       CHARACTER          TRANS
                    425:       INTEGER            CNT, I, J, X_STATE, Z_STATE, Y_PREC_STATE
                    426:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
                    427:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
                    428:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
                    429:      $                   EPS, HUGEVAL, INCR_THRESH
                    430:       LOGICAL            INCR_PREC
                    431: *     ..
                    432: *     .. Parameters ..
                    433:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
                    434:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
                    435:      $                   EXTRA_Y
                    436:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
                    437:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
                    438:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
                    439:      $                   EXTRA_Y = 2 )
                    440:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
                    441:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
                    442:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
                    443:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
                    444:      $                   BERR_I = 3 )
                    445:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
                    446:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
                    447:      $                   PIV_GROWTH_I = 9 )
                    448:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    449:      $                   LA_LINRX_CWISE_I
                    450:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    451:      $                   LA_LINRX_ITHRESH_I = 2 )
                    452:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    453:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    454:      $                   LA_LINRX_RCOND_I
                    455:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    456:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    457: *     ..
                    458: *     .. External Subroutines ..
                    459:       EXTERNAL           DAXPY, DCOPY, DGETRS, DGEMV, BLAS_DGEMV_X,
                    460:      $                   BLAS_DGEMV2_X, DLA_GEAMV, DLA_WWADDW, DLAMCH,
                    461:      $                   CHLA_TRANSTYPE, DLA_LIN_BERR
                    462:       DOUBLE PRECISION   DLAMCH
                    463:       CHARACTER          CHLA_TRANSTYPE
                    464: *     ..
                    465: *     .. Intrinsic Functions ..
                    466:       INTRINSIC          ABS, MAX, MIN
                    467: *     ..
                    468: *     .. Executable Statements ..
                    469: *
                    470:       IF ( INFO.NE.0 ) RETURN
                    471:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
                    472:       EPS = DLAMCH( 'Epsilon' )
                    473:       HUGEVAL = DLAMCH( 'Overflow' )
                    474: *     Force HUGEVAL to Inf
                    475:       HUGEVAL = HUGEVAL * HUGEVAL
                    476: *     Using HUGEVAL may lead to spurious underflows.
                    477:       INCR_THRESH = DBLE( N ) * EPS
                    478: *
                    479:       DO J = 1, NRHS
                    480:          Y_PREC_STATE = EXTRA_RESIDUAL
                    481:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
                    482:             DO I = 1, N
                    483:                Y_TAIL( I ) = 0.0D+0
                    484:             END DO
                    485:          END IF
                    486: 
                    487:          DXRAT = 0.0D+0
                    488:          DXRATMAX = 0.0D+0
                    489:          DZRAT = 0.0D+0
                    490:          DZRATMAX = 0.0D+0
                    491:          FINAL_DX_X = HUGEVAL
                    492:          FINAL_DZ_Z = HUGEVAL
                    493:          PREVNORMDX = HUGEVAL
                    494:          PREV_DZ_Z = HUGEVAL
                    495:          DZ_Z = HUGEVAL
                    496:          DX_X = HUGEVAL
                    497: 
                    498:          X_STATE = WORKING_STATE
                    499:          Z_STATE = UNSTABLE_STATE
                    500:          INCR_PREC = .FALSE.
                    501: 
                    502:          DO CNT = 1, ITHRESH
                    503: *
                    504: *         Compute residual RES = B_s - op(A_s) * Y,
                    505: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
                    506: *
                    507:             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
                    508:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
                    509:                CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y( 1, J ), 1,
                    510:      $              1.0D+0, RES, 1 )
                    511:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
                    512:                CALL BLAS_DGEMV_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
                    513:      $              Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
                    514:             ELSE
                    515:                CALL BLAS_DGEMV2_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
                    516:      $              Y( 1, J ), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE )
                    517:             END IF
                    518: 
                    519: !        XXX: RES is no longer needed.
                    520:             CALL DCOPY( N, RES, 1, DY, 1 )
                    521:             CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, DY, N, INFO )
                    522: *
                    523: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
                    524: *
                    525:             NORMX = 0.0D+0
                    526:             NORMY = 0.0D+0
                    527:             NORMDX = 0.0D+0
                    528:             DZ_Z = 0.0D+0
                    529:             YMIN = HUGEVAL
                    530: *
                    531:             DO I = 1, N
                    532:                YK = ABS( Y( I, J ) )
                    533:                DYK = ABS( DY( I ) )
                    534: 
                    535:                IF ( YK .NE. 0.0D+0 ) THEN
                    536:                   DZ_Z = MAX( DZ_Z, DYK / YK )
                    537:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
                    538:                   DZ_Z = HUGEVAL
                    539:                END IF
                    540: 
                    541:                YMIN = MIN( YMIN, YK )
                    542: 
                    543:                NORMY = MAX( NORMY, YK )
                    544: 
                    545:                IF ( COLEQU ) THEN
                    546:                   NORMX = MAX( NORMX, YK * C( I ) )
                    547:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
                    548:                ELSE
                    549:                   NORMX = NORMY
                    550:                   NORMDX = MAX( NORMDX, DYK )
                    551:                END IF
                    552:             END DO
                    553: 
                    554:             IF ( NORMX .NE. 0.0D+0 ) THEN
                    555:                DX_X = NORMDX / NORMX
                    556:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
                    557:                DX_X = 0.0D+0
                    558:             ELSE
                    559:                DX_X = HUGEVAL
                    560:             END IF
                    561: 
                    562:             DXRAT = NORMDX / PREVNORMDX
                    563:             DZRAT = DZ_Z / PREV_DZ_Z
                    564: *
                    565: *         Check termination criteria
                    566: *
                    567:             IF (.NOT.IGNORE_CWISE
                    568:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
                    569:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y)
                    570:      $           INCR_PREC = .TRUE.
                    571: 
                    572:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
                    573:      $           X_STATE = WORKING_STATE
                    574:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
                    575:                IF ( DX_X .LE. EPS ) THEN
                    576:                   X_STATE = CONV_STATE
                    577:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
                    578:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    579:                      INCR_PREC = .TRUE.
                    580:                   ELSE
                    581:                      X_STATE = NOPROG_STATE
                    582:                   END IF
                    583:                ELSE
                    584:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
                    585:                END IF
                    586:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
                    587:             END IF
                    588: 
                    589:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
                    590:      $           Z_STATE = WORKING_STATE
                    591:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
                    592:      $           Z_STATE = WORKING_STATE
                    593:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
                    594:                IF ( DZ_Z .LE. EPS ) THEN
                    595:                   Z_STATE = CONV_STATE
                    596:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
                    597:                   Z_STATE = UNSTABLE_STATE
                    598:                   DZRATMAX = 0.0D+0
                    599:                   FINAL_DZ_Z = HUGEVAL
                    600:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
                    601:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    602:                      INCR_PREC = .TRUE.
                    603:                   ELSE
                    604:                      Z_STATE = NOPROG_STATE
                    605:                   END IF
                    606:                ELSE
                    607:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
                    608:                END IF
                    609:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    610:             END IF
                    611: *
                    612: *           Exit if both normwise and componentwise stopped working,
                    613: *           but if componentwise is unstable, let it go at least two
                    614: *           iterations.
                    615: *
                    616:             IF ( X_STATE.NE.WORKING_STATE ) THEN
                    617:                IF ( IGNORE_CWISE) GOTO 666
                    618:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
                    619:      $              GOTO 666
                    620:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
                    621:             END IF
                    622: 
                    623:             IF ( INCR_PREC ) THEN
                    624:                INCR_PREC = .FALSE.
                    625:                Y_PREC_STATE = Y_PREC_STATE + 1
                    626:                DO I = 1, N
                    627:                   Y_TAIL( I ) = 0.0D+0
                    628:                END DO
                    629:             END IF
                    630: 
                    631:             PREVNORMDX = NORMDX
                    632:             PREV_DZ_Z = DZ_Z
                    633: *
                    634: *           Update soluton.
                    635: *
                    636:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
                    637:                CALL DAXPY( N, 1.0D+0, DY, 1, Y( 1, J ), 1 )
                    638:             ELSE
                    639:                CALL DLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
                    640:             END IF
                    641: 
                    642:          END DO
                    643: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
                    644:  666     CONTINUE
                    645: *
                    646: *     Set final_* when cnt hits ithresh.
                    647: *
                    648:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
                    649:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    650: *
                    651: *     Compute error bounds
                    652: *
                    653:          IF (N_NORMS .GE. 1) THEN
                    654:             ERRS_N( J, LA_LINRX_ERR_I ) = FINAL_DX_X / (1 - DXRATMAX)
                    655:          END IF
                    656:          IF ( N_NORMS .GE. 2 ) THEN
                    657:             ERRS_C( J, LA_LINRX_ERR_I ) = FINAL_DZ_Z / (1 - DZRATMAX)
                    658:          END IF
                    659: *
                    660: *     Compute componentwise relative backward error from formula
                    661: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    662: *     where abs(Z) is the componentwise absolute value of the matrix
                    663: *     or vector Z.
                    664: *
                    665: *         Compute residual RES = B_s - op(A_s) * Y,
                    666: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
                    667: *
                    668:          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
                    669:          CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0, 
                    670:      $     RES, 1 )
                    671: 
                    672:          DO I = 1, N
                    673:             AYB( I ) = ABS( B( I, J ) )
                    674:          END DO
                    675: *
                    676: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
                    677: *
                    678:          CALL DLA_GEAMV ( TRANS_TYPE, N, N, 1.0D+0,
                    679:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
                    680: 
                    681:          CALL DLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
                    682: *
                    683: *     End of loop for each RHS.
                    684: *
                    685:       END DO
                    686: *
                    687:       RETURN
                    688:       END

CVSweb interface <joel.bertrand@systella.fr>